Spaces:
Runtime error
Runtime error
Commit
·
a40cc28
1
Parent(s):
26177cc
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,13 +3,13 @@ import gradio as gr
|
|
| 3 |
from PIL import Image
|
| 4 |
from transformers import AutoProcessor, AutoModelForCausalLM
|
| 5 |
import spacy
|
| 6 |
-
|
| 7 |
device='cpu'
|
| 8 |
|
| 9 |
processor = AutoProcessor.from_pretrained("microsoft/git-base")
|
| 10 |
model = AutoModelForCausalLM.from_pretrained("nkasmanoff/sky-scribe").to(device)
|
| 11 |
|
| 12 |
-
|
| 13 |
|
| 14 |
def predict(image,max_length=50,device='cpu'):
|
| 15 |
pixel_values = processor(images=image, return_tensors="pt").to(device).pixel_values
|
|
@@ -19,82 +19,6 @@ def predict(image,max_length=50,device='cpu'):
|
|
| 19 |
return generated_caption
|
| 20 |
|
| 21 |
|
| 22 |
-
def get_entities(sent):
|
| 23 |
-
## chunk 1
|
| 24 |
-
ent1 = ""
|
| 25 |
-
ent2 = ""
|
| 26 |
-
|
| 27 |
-
prv_tok_dep = "" # dependency tag of previous token in the sentence
|
| 28 |
-
prv_tok_text = "" # previous token in the sentence
|
| 29 |
-
|
| 30 |
-
prefix = ""
|
| 31 |
-
modifier = ""
|
| 32 |
-
|
| 33 |
-
#############################################################
|
| 34 |
-
|
| 35 |
-
for tok in nlp(sent):
|
| 36 |
-
## chunk 2
|
| 37 |
-
# if token is a punctuation mark then move on to the next token
|
| 38 |
-
if tok.dep_ != "punct":
|
| 39 |
-
# check: token is a compound word or not
|
| 40 |
-
if tok.dep_ == "compound":
|
| 41 |
-
prefix = tok.text
|
| 42 |
-
# if the previous word was also a 'compound' then add the current word to it
|
| 43 |
-
if prv_tok_dep == "compound":
|
| 44 |
-
prefix = prv_tok_text + " " + tok.text
|
| 45 |
-
|
| 46 |
-
# check: token is a modifier or not
|
| 47 |
-
if tok.dep_.endswith("mod") == True:
|
| 48 |
-
modifier = tok.text
|
| 49 |
-
# if the previous word was also a 'compound' then add the current word to it
|
| 50 |
-
if prv_tok_dep == "compound":
|
| 51 |
-
modifier = prv_tok_text + " " + tok.text
|
| 52 |
-
|
| 53 |
-
## chunk 3
|
| 54 |
-
if tok.dep_.find("subj") == True:
|
| 55 |
-
ent1 = modifier + " " + prefix + " " + tok.text
|
| 56 |
-
prefix = ""
|
| 57 |
-
modifier = ""
|
| 58 |
-
prv_tok_dep = ""
|
| 59 |
-
prv_tok_text = ""
|
| 60 |
-
|
| 61 |
-
## chunk 4
|
| 62 |
-
if tok.dep_.find("obj") == True:
|
| 63 |
-
ent2 = modifier + " " + prefix + " " + tok.text
|
| 64 |
-
|
| 65 |
-
## chunk 5
|
| 66 |
-
# update variables
|
| 67 |
-
prv_tok_dep = tok.dep_
|
| 68 |
-
prv_tok_text = tok.text
|
| 69 |
-
#############################################################
|
| 70 |
-
|
| 71 |
-
return [ent1.strip(), ent2.strip()]
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
def get_relation(sent):
|
| 77 |
-
|
| 78 |
-
doc = nlp(sent)
|
| 79 |
-
|
| 80 |
-
# Matcher class object
|
| 81 |
-
matcher = Matcher(nlp.vocab)
|
| 82 |
-
|
| 83 |
-
#define the pattern
|
| 84 |
-
pattern = [{'DEP':'ROOT'},
|
| 85 |
-
{'DEP':'prep','OP':"?"},
|
| 86 |
-
{'DEP':'agent','OP':"?"},
|
| 87 |
-
{'POS':'ADJ','OP':"?"}]
|
| 88 |
-
|
| 89 |
-
matcher.add('matching_pattern', patterns=[pattern])
|
| 90 |
-
matches = matcher(doc)
|
| 91 |
-
k = len(matches) - 1
|
| 92 |
-
|
| 93 |
-
span = doc[matches[k][1]:matches[k][2]]
|
| 94 |
-
|
| 95 |
-
return(span.text)
|
| 96 |
-
|
| 97 |
-
|
| 98 |
|
| 99 |
input = gr.inputs.Image(label="Please upload an image", type = 'pil', optional=True)
|
| 100 |
output = gr.outputs.Textbox(type="text",label="Captions")
|
|
|
|
| 3 |
from PIL import Image
|
| 4 |
from transformers import AutoProcessor, AutoModelForCausalLM
|
| 5 |
import spacy
|
| 6 |
+
|
| 7 |
device='cpu'
|
| 8 |
|
| 9 |
processor = AutoProcessor.from_pretrained("microsoft/git-base")
|
| 10 |
model = AutoModelForCausalLM.from_pretrained("nkasmanoff/sky-scribe").to(device)
|
| 11 |
|
| 12 |
+
|
| 13 |
|
| 14 |
def predict(image,max_length=50,device='cpu'):
|
| 15 |
pixel_values = processor(images=image, return_tensors="pt").to(device).pixel_values
|
|
|
|
| 19 |
return generated_caption
|
| 20 |
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
input = gr.inputs.Image(label="Please upload an image", type = 'pil', optional=True)
|
| 24 |
output = gr.outputs.Textbox(type="text",label="Captions")
|