Update app.py
Browse fileschange model to llama3
app.py
CHANGED
|
@@ -1,63 +1,58 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
""
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
):
|
| 18 |
-
messages = [{
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
additional_inputs=[
|
| 48 |
-
gr.Textbox(
|
| 49 |
-
gr.Slider(
|
| 50 |
-
gr.Slider(
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
maximum=1.0,
|
| 54 |
-
value=0.95,
|
| 55 |
-
step=0.05,
|
| 56 |
-
label="Top-p (nucleus sampling)",
|
| 57 |
-
),
|
| 58 |
-
],
|
| 59 |
-
)
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
if __name__ == "__main__":
|
| 63 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
+
import torch
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
model_name = "meta-llama/Meta-Llama-3-8B-Instruct"
|
| 7 |
+
device_map = 'cuda'
|
| 8 |
+
|
| 9 |
+
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
| 10 |
+
|
| 11 |
+
def load_model() -> AutoModelForCausalLM:
|
| 12 |
+
return AutoModelForCausalLM.from_pretrained(model_name, device_map=device_map)
|
| 13 |
+
|
| 14 |
+
def load_tokenizer() -> AutoTokenizer:
|
| 15 |
+
return AutoTokenizer.from_pretrained(model_name)
|
| 16 |
+
|
| 17 |
+
def preprocess_messages(message: str, history: list, system_prompt: str) -> dict:
|
| 18 |
+
messages = [{'role': 'system', 'content': system_prompt}, {'role': 'user', 'content': message}]
|
| 19 |
+
prompt = load_tokenizer().apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 20 |
+
return prompt
|
| 21 |
+
|
| 22 |
+
def generate_text(prompt: str, max_new_tokens: int, temperature: float) -> str:
|
| 23 |
+
model = load_model()
|
| 24 |
+
terminators = [load_tokenizer().eos_token_id, load_tokenizer().convert_tokens_to_ids(['\n'])]
|
| 25 |
+
temp = temperature + 0.1
|
| 26 |
+
outputs = model.generate(
|
| 27 |
+
prompt,
|
| 28 |
+
max_new_tokens=max_new_tokens,
|
| 29 |
+
eos_token_id=terminators[0],
|
| 30 |
+
do_sample=True,
|
| 31 |
+
temperature=temp,
|
| 32 |
+
top_p=0.9
|
| 33 |
+
)
|
| 34 |
+
return load_tokenizer().decode(outputs[0], skip_special_tokens=True)
|
| 35 |
+
|
| 36 |
+
def chat_function(
|
| 37 |
+
message: str,
|
| 38 |
+
history: list,
|
| 39 |
+
system_prompt: str,
|
| 40 |
+
max_new_tokens: int,
|
| 41 |
+
temperature: float
|
| 42 |
+
) -> str:
|
| 43 |
+
prompt = preprocess_messages(message, history, system_prompt)
|
| 44 |
+
return generate_text(prompt, max_new_tokens, temperature)
|
| 45 |
+
|
| 46 |
+
gr.ChatInterface(
|
| 47 |
+
chat_function,
|
| 48 |
+
chatbot=gr.Chatbot(height=400),
|
| 49 |
+
textbox=gr.Textbox(placeholder="Enter message here", container=False, scale=7),
|
| 50 |
+
title="LLAMA3 Chat",
|
| 51 |
+
description="""Chat with llama3""",
|
| 52 |
+
theme="soft",
|
| 53 |
additional_inputs=[
|
| 54 |
+
gr.Textbox("You shall answer to all the questions as very smart AI", label="System Prompt"),
|
| 55 |
+
gr.Slider(512, 4096, label="Max New Tokens"),
|
| 56 |
+
gr.Slider(0, 1, label="Temperature")
|
| 57 |
+
]
|
| 58 |
+
).launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|