Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,22 +5,24 @@ import pickle
|
|
| 5 |
import json
|
| 6 |
import tensorflow as tf
|
| 7 |
from tensorflow.keras.models import model_from_json
|
| 8 |
-
import plotly.graph_objects as go
|
| 9 |
-
from plotly.subplots import make_subplots
|
| 10 |
import os
|
| 11 |
|
| 12 |
-
#
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
|
|
|
| 17 |
try:
|
| 18 |
# Load model architecture
|
| 19 |
with open('model_architecture.json', 'r') as json_file:
|
| 20 |
model_json = json_file.read()
|
| 21 |
model = model_from_json(model_json)
|
| 22 |
|
| 23 |
-
# Load
|
| 24 |
model.load_weights('final_model.h5')
|
| 25 |
|
| 26 |
# Load scaler
|
|
@@ -30,261 +32,54 @@ def load_model_artifacts():
|
|
| 30 |
# Load metadata
|
| 31 |
with open('metadata.json', 'r') as f:
|
| 32 |
metadata = json.load(f)
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
|
|
|
| 36 |
except Exception as e:
|
| 37 |
-
print(f"❌ Error loading model
|
| 38 |
-
return None, None, {}
|
| 39 |
|
| 40 |
-
# Load model
|
| 41 |
-
|
| 42 |
-
if model:
|
| 43 |
-
feature_names = metadata.get('feature_names', ['Feature_1', 'Feature_2'])
|
| 44 |
-
print(f"✅ Model loaded successfully with features: {feature_names}")
|
| 45 |
-
else:
|
| 46 |
-
feature_names = ['Feature_1', 'Feature_2']
|
| 47 |
-
print("❌ Model failed to load - running in demo mode with placeholder features")
|
| 48 |
|
| 49 |
-
def
|
| 50 |
try:
|
| 51 |
if model is None or scaler is None:
|
| 52 |
-
raise
|
| 53 |
-
|
| 54 |
# Create input dictionary
|
| 55 |
input_data = {feature_names[i]: float(args[i]) for i in range(len(feature_names))}
|
| 56 |
-
|
| 57 |
-
# Create DataFrame ensuring correct column order
|
| 58 |
-
input_df = pd.DataFrame([input_data], columns=feature_names)
|
| 59 |
|
| 60 |
# Scale features
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
# Reshape for CNN (samples, timesteps, features)
|
| 64 |
-
input_reshaped = input_scaled.reshape(input_scaled.shape[0], input_scaled.shape[1], 1)
|
| 65 |
|
| 66 |
-
#
|
| 67 |
-
probability = float(model.predict(
|
| 68 |
prediction = "Eligible" if probability > 0.5 else "Not Eligible"
|
| 69 |
-
confidence = abs(probability - 0.5) * 2 # Convert to 0-1 range
|
| 70 |
-
|
| 71 |
-
# Create visualization
|
| 72 |
-
fig = create_prediction_viz(probability, prediction, input_data)
|
| 73 |
-
|
| 74 |
-
return prediction, f"{probability:.4f}", f"{confidence:.4f}", fig
|
| 75 |
-
|
| 76 |
-
except Exception as e:
|
| 77 |
-
error_msg = f"Error: {str(e)}"
|
| 78 |
-
print(error_msg)
|
| 79 |
-
return error_msg, "N/A", "N/A", create_error_plot(error_msg)
|
| 80 |
-
|
| 81 |
-
def create_error_plot(message="Model not available or error occurred"):
|
| 82 |
-
fig = go.Figure()
|
| 83 |
-
fig.add_annotation(
|
| 84 |
-
text=message,
|
| 85 |
-
xref="paper", yref="paper",
|
| 86 |
-
x=0.5, y=0.5, xanchor='center', yanchor='middle',
|
| 87 |
-
showarrow=False, font=dict(size=16, color="red")
|
| 88 |
-
)
|
| 89 |
-
fig.update_layout(
|
| 90 |
-
xaxis={'visible': False},
|
| 91 |
-
yaxis={'visible': False},
|
| 92 |
-
height=400,
|
| 93 |
-
margin=dict(l=20, r=20, t=30, b=20)
|
| 94 |
-
)
|
| 95 |
-
return fig
|
| 96 |
-
|
| 97 |
-
def create_prediction_viz(probability, prediction, input_data):
|
| 98 |
-
try:
|
| 99 |
-
fig = make_subplots(
|
| 100 |
-
rows=2, cols=2,
|
| 101 |
-
subplot_titles=('Prediction Probability', 'Confidence Meter', 'Input Features', 'Probability Distribution'),
|
| 102 |
-
specs=[[{"type": "indicator"}, {"type": "indicator"}],
|
| 103 |
-
[{"type": "bar"}, {"type": "scatter"}]]
|
| 104 |
-
)
|
| 105 |
-
|
| 106 |
-
# Prediction probability gauge
|
| 107 |
-
fig.add_trace(
|
| 108 |
-
go.Indicator(
|
| 109 |
-
mode="gauge+number",
|
| 110 |
-
value=probability,
|
| 111 |
-
title={'text': "Eligibility Probability"},
|
| 112 |
-
gauge={
|
| 113 |
-
'axis': {'range': [None, 1]},
|
| 114 |
-
'bar': {'color': "darkblue"},
|
| 115 |
-
'steps': [
|
| 116 |
-
{'range': [0, 0.5], 'color': "lightcoral"},
|
| 117 |
-
{'range': [0.5, 1], 'color': "lightgreen"}
|
| 118 |
-
],
|
| 119 |
-
'threshold': {
|
| 120 |
-
'line': {'color': "red", 'width': 4},
|
| 121 |
-
'thickness': 0.75,
|
| 122 |
-
'value': 0.5
|
| 123 |
-
}
|
| 124 |
-
}
|
| 125 |
-
), row=1, col=1
|
| 126 |
-
)
|
| 127 |
-
|
| 128 |
-
# Confidence meter
|
| 129 |
confidence = abs(probability - 0.5) * 2
|
| 130 |
-
fig.add_trace(
|
| 131 |
-
go.Indicator(
|
| 132 |
-
mode="gauge+number",
|
| 133 |
-
value=confidence,
|
| 134 |
-
title={'text': "Prediction Confidence"},
|
| 135 |
-
gauge={
|
| 136 |
-
'axis': {'range': [None, 1]},
|
| 137 |
-
'bar': {'color': "orange"},
|
| 138 |
-
'steps': [
|
| 139 |
-
{'range': [0, 0.3], 'color': "lightcoral"},
|
| 140 |
-
{'range': [0.3, 0.7], 'color': "lightyellow"},
|
| 141 |
-
{'range': [0.7, 1], 'color': "lightgreen"}
|
| 142 |
-
]
|
| 143 |
-
}
|
| 144 |
-
), row=1, col=2
|
| 145 |
-
)
|
| 146 |
-
|
| 147 |
-
# Input features bar chart
|
| 148 |
-
features = list(input_data.keys())
|
| 149 |
-
values = list(input_data.values())
|
| 150 |
-
fig.add_trace(
|
| 151 |
-
go.Bar(
|
| 152 |
-
x=features,
|
| 153 |
-
y=values,
|
| 154 |
-
name="Input Values",
|
| 155 |
-
marker_color="skyblue",
|
| 156 |
-
text=values,
|
| 157 |
-
textposition='auto'
|
| 158 |
-
),
|
| 159 |
-
row=2, col=1
|
| 160 |
-
)
|
| 161 |
-
|
| 162 |
-
# Probability distribution
|
| 163 |
-
fig.add_trace(
|
| 164 |
-
go.Scatter(
|
| 165 |
-
x=[0, 1],
|
| 166 |
-
y=[probability, probability],
|
| 167 |
-
mode='lines+markers',
|
| 168 |
-
name="Probability",
|
| 169 |
-
line=dict(color="red", width=3),
|
| 170 |
-
marker=dict(size=10)
|
| 171 |
-
),
|
| 172 |
-
row=2, col=2
|
| 173 |
-
)
|
| 174 |
-
|
| 175 |
-
fig.update_layout(
|
| 176 |
-
height=800,
|
| 177 |
-
showlegend=False,
|
| 178 |
-
title_text="Student Eligibility Prediction Dashboard",
|
| 179 |
-
title_x=0.5,
|
| 180 |
-
margin=dict(l=50, r=50, t=100, b=50)
|
| 181 |
-
)
|
| 182 |
-
|
| 183 |
-
# Update x-axis for probability plot
|
| 184 |
-
fig.update_xaxes(title_text="", row=2, col=2, range=[-0.1, 1.1])
|
| 185 |
-
fig.update_yaxes(title_text="Probability", row=2, col=2, range=[0, 1])
|
| 186 |
-
|
| 187 |
-
return fig
|
| 188 |
-
except Exception as e:
|
| 189 |
-
return create_error_plot(str(e))
|
| 190 |
-
|
| 191 |
-
def batch_predict(file):
|
| 192 |
-
try:
|
| 193 |
-
if model is None or scaler is None:
|
| 194 |
-
return "Model not loaded. Please check if all model files are uploaded.", None
|
| 195 |
-
|
| 196 |
-
if file is None:
|
| 197 |
-
return "Please upload a CSV file.", None
|
| 198 |
-
|
| 199 |
-
df = pd.read_csv(file)
|
| 200 |
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
# Ensure correct column order
|
| 207 |
-
df_features = df[feature_names]
|
| 208 |
-
df_scaled = scaler.transform(df_features)
|
| 209 |
-
df_reshaped = df_scaled.reshape(df_scaled.shape[0], df_scaled.shape[1], 1)
|
| 210 |
-
|
| 211 |
-
probabilities = model.predict(df_reshaped).flatten()
|
| 212 |
-
predictions = ["Eligible" if p > 0.5 else "Not Eligible" for p in probabilities]
|
| 213 |
-
|
| 214 |
-
results_df = df.copy()
|
| 215 |
-
results_df['Probability'] = probabilities
|
| 216 |
-
results_df['Prediction'] = predictions
|
| 217 |
-
results_df['Confidence'] = np.abs(probabilities - 0.5) * 2
|
| 218 |
-
|
| 219 |
-
output_file = "batch_predictions.csv"
|
| 220 |
-
results_df.to_csv(output_file, index=False)
|
| 221 |
-
|
| 222 |
-
eligible_count = predictions.count('Eligible')
|
| 223 |
-
not_eligible_count = predictions.count('Not Eligible')
|
| 224 |
-
|
| 225 |
-
summary = f"""Batch Prediction Summary:
|
| 226 |
-
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
|
| 227 |
-
📊 Total predictions: {len(results_df)}
|
| 228 |
-
✅ Eligible: {eligible_count} ({eligible_count / len(predictions) * 100:.1f}%)
|
| 229 |
-
❌ Not Eligible: {not_eligible_count} ({not_eligible_count / len(predictions) * 100:.1f}%)
|
| 230 |
-
📈 Average Probability: {np.mean(probabilities):.4f}
|
| 231 |
-
🎯 Average Confidence: {np.mean(np.abs(probabilities - 0.5) * 2):.4f}
|
| 232 |
-
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
|
| 233 |
-
Results saved to: {output_file}
|
| 234 |
-
"""
|
| 235 |
-
|
| 236 |
-
return summary, output_file
|
| 237 |
-
|
| 238 |
except Exception as e:
|
| 239 |
-
return
|
| 240 |
-
|
| 241 |
-
# Gradio
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
gr.
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
probability = gr.Textbox(label="Probability")
|
| 255 |
-
confidence = gr.Textbox(label="Confidence")
|
| 256 |
-
plot = gr.Plot()
|
| 257 |
-
|
| 258 |
-
predict_btn.click(
|
| 259 |
-
predict_student_eligibility,
|
| 260 |
-
inputs=inputs,
|
| 261 |
-
outputs=[prediction, probability, confidence, plot]
|
| 262 |
-
)
|
| 263 |
-
|
| 264 |
-
with gr.Tab("📁 Batch Prediction"):
|
| 265 |
-
gr.Markdown("Upload a CSV file with student data to get batch predictions.")
|
| 266 |
-
with gr.Row():
|
| 267 |
-
with gr.Column():
|
| 268 |
-
file_input = gr.File(
|
| 269 |
-
label="Upload CSV",
|
| 270 |
-
file_types=[".csv"],
|
| 271 |
-
type="filepath"
|
| 272 |
-
)
|
| 273 |
-
batch_btn = gr.Button("Process Batch", variant="primary")
|
| 274 |
-
with gr.Column():
|
| 275 |
-
batch_output = gr.Textbox(label="Results", lines=10)
|
| 276 |
-
download = gr.File(label="Download Predictions")
|
| 277 |
-
|
| 278 |
-
batch_btn.click(
|
| 279 |
-
batch_predict,
|
| 280 |
-
inputs=file_input,
|
| 281 |
-
outputs=[batch_output, download]
|
| 282 |
-
)
|
| 283 |
-
|
| 284 |
-
# Footer
|
| 285 |
-
gr.Markdown("---")
|
| 286 |
-
gr.Markdown("> Note: This model was trained on student eligibility data. Ensure your input features match the training data format.")
|
| 287 |
|
| 288 |
-
# Launch app
|
| 289 |
if __name__ == "__main__":
|
| 290 |
-
|
|
|
|
| 5 |
import json
|
| 6 |
import tensorflow as tf
|
| 7 |
from tensorflow.keras.models import model_from_json
|
|
|
|
|
|
|
| 8 |
import os
|
| 9 |
|
| 10 |
+
# Initialize model components
|
| 11 |
+
model = None
|
| 12 |
+
scaler = None
|
| 13 |
+
metadata = {}
|
| 14 |
+
feature_names = []
|
| 15 |
|
| 16 |
+
def load_model():
|
| 17 |
+
global model, scaler, metadata, feature_names
|
| 18 |
+
|
| 19 |
try:
|
| 20 |
# Load model architecture
|
| 21 |
with open('model_architecture.json', 'r') as json_file:
|
| 22 |
model_json = json_file.read()
|
| 23 |
model = model_from_json(model_json)
|
| 24 |
|
| 25 |
+
# Load weights
|
| 26 |
model.load_weights('final_model.h5')
|
| 27 |
|
| 28 |
# Load scaler
|
|
|
|
| 32 |
# Load metadata
|
| 33 |
with open('metadata.json', 'r') as f:
|
| 34 |
metadata = json.load(f)
|
| 35 |
+
feature_names = metadata['feature_names']
|
| 36 |
+
|
| 37 |
+
print("✅ Model loaded successfully!")
|
| 38 |
+
print(f"Using features: {feature_names}")
|
| 39 |
except Exception as e:
|
| 40 |
+
print(f"❌ Error loading model: {str(e)}")
|
|
|
|
| 41 |
|
| 42 |
+
# Load model at startup
|
| 43 |
+
load_model()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
+
def predict(*args):
|
| 46 |
try:
|
| 47 |
if model is None or scaler is None:
|
| 48 |
+
raise Exception("Model not loaded. Please check the model files.")
|
| 49 |
+
|
| 50 |
# Create input dictionary
|
| 51 |
input_data = {feature_names[i]: float(args[i]) for i in range(len(feature_names))}
|
| 52 |
+
input_df = pd.DataFrame([input_data])
|
|
|
|
|
|
|
| 53 |
|
| 54 |
# Scale features
|
| 55 |
+
scaled_input = scaler.transform(input_df)
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
+
# Predict
|
| 58 |
+
probability = float(model.predict(scaled_input)[0][0])
|
| 59 |
prediction = "Eligible" if probability > 0.5 else "Not Eligible"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
confidence = abs(probability - 0.5) * 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
+
return {
|
| 63 |
+
"Prediction": prediction,
|
| 64 |
+
"Probability": f"{probability:.4f}",
|
| 65 |
+
"Confidence": f"{confidence:.4f}"
|
| 66 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
except Exception as e:
|
| 68 |
+
return {"Error": str(e)}
|
| 69 |
+
|
| 70 |
+
# Create Gradio interface
|
| 71 |
+
iface = gr.Interface(
|
| 72 |
+
fn=predict,
|
| 73 |
+
inputs=[gr.Number(label=name) for name in feature_names],
|
| 74 |
+
outputs=[
|
| 75 |
+
gr.Textbox(label="Prediction"),
|
| 76 |
+
gr.Textbox(label="Probability"),
|
| 77 |
+
gr.Textbox(label="Confidence")
|
| 78 |
+
],
|
| 79 |
+
title="🎓 Student Eligibility Predictor",
|
| 80 |
+
description="Predict student eligibility based on academic performance metrics",
|
| 81 |
+
examples=[[75, 80, 85] if len(feature_names) >= 3 else [75, 80]] # Example inputs
|
| 82 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
|
|
|
| 84 |
if __name__ == "__main__":
|
| 85 |
+
iface.launch()
|