Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -15,6 +15,7 @@ os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
|
|
| 15 |
# Load model artifacts
|
| 16 |
def load_model_artifacts():
|
| 17 |
try:
|
|
|
|
| 18 |
with open('model_architecture.json', 'r') as json_file:
|
| 19 |
model_json = json_file.read()
|
| 20 |
model = model_from_json(model_json)
|
|
@@ -33,21 +34,26 @@ def load_model_artifacts():
|
|
| 33 |
# Initialize model components
|
| 34 |
try:
|
| 35 |
model, scaler, metadata = load_model_artifacts()
|
| 36 |
-
#
|
| 37 |
-
feature_names = ['Feature_1', 'Feature_2']
|
| 38 |
print(f"β
Model loaded successfully with features: {feature_names}")
|
| 39 |
except Exception as e:
|
| 40 |
print(f"β Error loading model: {e}")
|
| 41 |
model, scaler, metadata = None, None, {}
|
| 42 |
-
feature_names = ['Feature_1', 'Feature_2']
|
| 43 |
|
| 44 |
def predict_student_eligibility(*args):
|
| 45 |
try:
|
| 46 |
if model is None or scaler is None:
|
| 47 |
return "Model not loaded", "N/A", "N/A", create_error_plot()
|
| 48 |
|
|
|
|
| 49 |
input_data = {feature_names[i]: args[i] for i in range(len(feature_names))}
|
| 50 |
input_df = pd.DataFrame([input_data])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
input_scaled = scaler.transform(input_df)
|
| 52 |
input_reshaped = input_scaled.reshape(input_scaled.shape[0], input_scaled.shape[1], 1)
|
| 53 |
|
|
@@ -85,6 +91,7 @@ def create_prediction_viz(probability, prediction, input_data):
|
|
| 85 |
[{"type": "bar"}, {"type": "scatter"}]]
|
| 86 |
)
|
| 87 |
|
|
|
|
| 88 |
fig.add_trace(
|
| 89 |
go.Indicator(
|
| 90 |
mode="gauge+number",
|
|
@@ -106,6 +113,7 @@ def create_prediction_viz(probability, prediction, input_data):
|
|
| 106 |
), row=1, col=1
|
| 107 |
)
|
| 108 |
|
|
|
|
| 109 |
confidence = abs(probability - 0.5) * 2
|
| 110 |
fig.add_trace(
|
| 111 |
go.Indicator(
|
|
@@ -124,27 +132,46 @@ def create_prediction_viz(probability, prediction, input_data):
|
|
| 124 |
), row=1, col=2
|
| 125 |
)
|
| 126 |
|
|
|
|
| 127 |
features = list(input_data.keys())
|
| 128 |
values = list(input_data.values())
|
| 129 |
-
fig.add_trace(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
|
|
|
|
| 131 |
fig.add_trace(
|
| 132 |
go.Scatter(
|
| 133 |
-
x=[0, 1],
|
|
|
|
| 134 |
mode='lines+markers',
|
| 135 |
name="Probability",
|
| 136 |
line=dict(color="red", width=3),
|
| 137 |
marker=dict(size=10)
|
| 138 |
-
),
|
|
|
|
| 139 |
)
|
| 140 |
|
| 141 |
fig.update_layout(
|
| 142 |
height=800,
|
| 143 |
showlegend=False,
|
| 144 |
title_text="Student Eligibility Prediction Dashboard",
|
| 145 |
-
title_x=0.5
|
|
|
|
| 146 |
)
|
| 147 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
return fig
|
| 149 |
except Exception as e:
|
| 150 |
return create_error_plot()
|
|
@@ -158,10 +185,13 @@ def batch_predict(file):
|
|
| 158 |
return "Please upload a CSV file.", None
|
| 159 |
|
| 160 |
df = pd.read_csv(file)
|
|
|
|
|
|
|
| 161 |
missing_features = set(feature_names) - set(df.columns)
|
| 162 |
if missing_features:
|
| 163 |
-
return f"Missing features: {missing_features}", None
|
| 164 |
|
|
|
|
| 165 |
df_features = df[feature_names]
|
| 166 |
df_scaled = scaler.transform(df_features)
|
| 167 |
df_reshaped = df_scaled.reshape(df_scaled.shape[0], df_scaled.shape[1], 1)
|
|
@@ -169,7 +199,7 @@ def batch_predict(file):
|
|
| 169 |
probabilities = model.predict(df_reshaped).flatten()
|
| 170 |
predictions = ["Eligible" if p > 0.5 else "Not Eligible" for p in probabilities]
|
| 171 |
|
| 172 |
-
results_df =
|
| 173 |
results_df['Probability'] = probabilities
|
| 174 |
results_df['Prediction'] = predictions
|
| 175 |
results_df['Confidence'] = np.abs(probabilities - 0.5) * 2
|
|
@@ -197,27 +227,52 @@ Results saved to: {output_file}
|
|
| 197 |
return f"Error processing file: {str(e)}", None
|
| 198 |
|
| 199 |
# Gradio UI
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
with demo:
|
| 203 |
gr.Markdown("# π Student Eligibility Prediction")
|
|
|
|
|
|
|
| 204 |
with gr.Tabs():
|
| 205 |
-
with gr.Tab("Single Prediction"):
|
| 206 |
-
inputs = [gr.Number(label=feature, value=75) for feature in feature_names]
|
| 207 |
-
predict_btn = gr.Button("Predict")
|
| 208 |
with gr.Row():
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
plot = gr.Plot()
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 221 |
|
| 222 |
# Launch app
|
| 223 |
-
|
|
|
|
|
|
| 15 |
# Load model artifacts
|
| 16 |
def load_model_artifacts():
|
| 17 |
try:
|
| 18 |
+
# Load from the same directory where training code saved artifacts
|
| 19 |
with open('model_architecture.json', 'r') as json_file:
|
| 20 |
model_json = json_file.read()
|
| 21 |
model = model_from_json(model_json)
|
|
|
|
| 34 |
# Initialize model components
|
| 35 |
try:
|
| 36 |
model, scaler, metadata = load_model_artifacts()
|
| 37 |
+
feature_names = metadata['feature_names'] # Get feature names from metadata
|
|
|
|
| 38 |
print(f"β
Model loaded successfully with features: {feature_names}")
|
| 39 |
except Exception as e:
|
| 40 |
print(f"β Error loading model: {e}")
|
| 41 |
model, scaler, metadata = None, None, {}
|
| 42 |
+
feature_names = ['Feature_1', 'Feature_2'] # Fallback if metadata not available
|
| 43 |
|
| 44 |
def predict_student_eligibility(*args):
|
| 45 |
try:
|
| 46 |
if model is None or scaler is None:
|
| 47 |
return "Model not loaded", "N/A", "N/A", create_error_plot()
|
| 48 |
|
| 49 |
+
# Create input dictionary with correct feature names
|
| 50 |
input_data = {feature_names[i]: args[i] for i in range(len(feature_names))}
|
| 51 |
input_df = pd.DataFrame([input_data])
|
| 52 |
+
|
| 53 |
+
# Ensure columns are in correct order
|
| 54 |
+
input_df = input_df[feature_names]
|
| 55 |
+
|
| 56 |
+
# Scale and reshape input
|
| 57 |
input_scaled = scaler.transform(input_df)
|
| 58 |
input_reshaped = input_scaled.reshape(input_scaled.shape[0], input_scaled.shape[1], 1)
|
| 59 |
|
|
|
|
| 91 |
[{"type": "bar"}, {"type": "scatter"}]]
|
| 92 |
)
|
| 93 |
|
| 94 |
+
# Prediction probability gauge
|
| 95 |
fig.add_trace(
|
| 96 |
go.Indicator(
|
| 97 |
mode="gauge+number",
|
|
|
|
| 113 |
), row=1, col=1
|
| 114 |
)
|
| 115 |
|
| 116 |
+
# Confidence meter
|
| 117 |
confidence = abs(probability - 0.5) * 2
|
| 118 |
fig.add_trace(
|
| 119 |
go.Indicator(
|
|
|
|
| 132 |
), row=1, col=2
|
| 133 |
)
|
| 134 |
|
| 135 |
+
# Input features bar chart
|
| 136 |
features = list(input_data.keys())
|
| 137 |
values = list(input_data.values())
|
| 138 |
+
fig.add_trace(
|
| 139 |
+
go.Bar(
|
| 140 |
+
x=features,
|
| 141 |
+
y=values,
|
| 142 |
+
name="Input Values",
|
| 143 |
+
marker_color="skyblue",
|
| 144 |
+
text=values,
|
| 145 |
+
textposition='auto'
|
| 146 |
+
),
|
| 147 |
+
row=2, col=1
|
| 148 |
+
)
|
| 149 |
|
| 150 |
+
# Probability distribution
|
| 151 |
fig.add_trace(
|
| 152 |
go.Scatter(
|
| 153 |
+
x=[0, 1],
|
| 154 |
+
y=[probability, probability],
|
| 155 |
mode='lines+markers',
|
| 156 |
name="Probability",
|
| 157 |
line=dict(color="red", width=3),
|
| 158 |
marker=dict(size=10)
|
| 159 |
+
),
|
| 160 |
+
row=2, col=2
|
| 161 |
)
|
| 162 |
|
| 163 |
fig.update_layout(
|
| 164 |
height=800,
|
| 165 |
showlegend=False,
|
| 166 |
title_text="Student Eligibility Prediction Dashboard",
|
| 167 |
+
title_x=0.5,
|
| 168 |
+
margin=dict(l=50, r=50, t=100, b=50)
|
| 169 |
)
|
| 170 |
|
| 171 |
+
# Update x-axis for probability plot
|
| 172 |
+
fig.update_xaxes(title_text="", row=2, col=2, range=[-0.1, 1.1])
|
| 173 |
+
fig.update_yaxes(title_text="Probability", row=2, col=2, range=[0, 1])
|
| 174 |
+
|
| 175 |
return fig
|
| 176 |
except Exception as e:
|
| 177 |
return create_error_plot()
|
|
|
|
| 185 |
return "Please upload a CSV file.", None
|
| 186 |
|
| 187 |
df = pd.read_csv(file)
|
| 188 |
+
|
| 189 |
+
# Check for required features
|
| 190 |
missing_features = set(feature_names) - set(df.columns)
|
| 191 |
if missing_features:
|
| 192 |
+
return f"Missing features: {', '.join(missing_features)}", None
|
| 193 |
|
| 194 |
+
# Ensure correct column order
|
| 195 |
df_features = df[feature_names]
|
| 196 |
df_scaled = scaler.transform(df_features)
|
| 197 |
df_reshaped = df_scaled.reshape(df_scaled.shape[0], df_scaled.shape[1], 1)
|
|
|
|
| 199 |
probabilities = model.predict(df_reshaped).flatten()
|
| 200 |
predictions = ["Eligible" if p > 0.5 else "Not Eligible" for p in probabilities]
|
| 201 |
|
| 202 |
+
results_df = df.copy()
|
| 203 |
results_df['Probability'] = probabilities
|
| 204 |
results_df['Prediction'] = predictions
|
| 205 |
results_df['Confidence'] = np.abs(probabilities - 0.5) * 2
|
|
|
|
| 227 |
return f"Error processing file: {str(e)}", None
|
| 228 |
|
| 229 |
# Gradio UI
|
| 230 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
|
|
|
|
|
| 231 |
gr.Markdown("# π Student Eligibility Prediction")
|
| 232 |
+
gr.Markdown("This app predicts student eligibility based on academic performance metrics.")
|
| 233 |
+
|
| 234 |
with gr.Tabs():
|
| 235 |
+
with gr.Tab("π Single Prediction"):
|
|
|
|
|
|
|
| 236 |
with gr.Row():
|
| 237 |
+
with gr.Column():
|
| 238 |
+
inputs = [gr.Number(label=feature, value=75) for feature in feature_names]
|
| 239 |
+
predict_btn = gr.Button("Predict", variant="primary")
|
| 240 |
+
with gr.Column():
|
| 241 |
+
prediction = gr.Textbox(label="Prediction")
|
| 242 |
+
probability = gr.Textbox(label="Probability")
|
| 243 |
+
confidence = gr.Textbox(label="Confidence")
|
| 244 |
plot = gr.Plot()
|
| 245 |
+
|
| 246 |
+
predict_btn.click(
|
| 247 |
+
predict_student_eligibility,
|
| 248 |
+
inputs=inputs,
|
| 249 |
+
outputs=[prediction, probability, confidence, plot]
|
| 250 |
+
)
|
| 251 |
+
|
| 252 |
+
with gr.Tab("π Batch Prediction"):
|
| 253 |
+
gr.Markdown("Upload a CSV file with student data to get batch predictions.")
|
| 254 |
+
with gr.Row():
|
| 255 |
+
with gr.Column():
|
| 256 |
+
file_input = gr.File(
|
| 257 |
+
label="Upload CSV",
|
| 258 |
+
file_types=[".csv"],
|
| 259 |
+
type="filepath"
|
| 260 |
+
)
|
| 261 |
+
batch_btn = gr.Button("Process Batch", variant="primary")
|
| 262 |
+
with gr.Column():
|
| 263 |
+
batch_output = gr.Textbox(label="Results", lines=10)
|
| 264 |
+
download = gr.File(label="Download Predictions")
|
| 265 |
+
|
| 266 |
+
batch_btn.click(
|
| 267 |
+
batch_predict,
|
| 268 |
+
inputs=file_input,
|
| 269 |
+
outputs=[batch_output, download]
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
# Footer
|
| 273 |
+
gr.Markdown("---")
|
| 274 |
+
gr.Markdown("> Note: This model was trained on student eligibility data. Ensure your input features match the training data format.")
|
| 275 |
|
| 276 |
# Launch app
|
| 277 |
+
if __name__ == "__main__":
|
| 278 |
+
demo.launch()
|