Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,17 +4,23 @@ import numpy as np
|
|
| 4 |
import pickle
|
| 5 |
import json
|
| 6 |
import tensorflow as tf
|
| 7 |
-
from tensorflow.keras.models import load_model
|
| 8 |
import plotly.graph_objects as go
|
| 9 |
-
import plotly.express as px
|
| 10 |
-
from plotly.subplots import make_subplots
|
| 11 |
import os
|
| 12 |
|
|
|
|
|
|
|
|
|
|
| 13 |
# Load model artifacts
|
| 14 |
def load_model_artifacts():
|
| 15 |
try:
|
| 16 |
-
# Load
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
# Load the scaler
|
| 20 |
with open('scaler.pkl', 'rb') as f:
|
|
@@ -40,9 +46,7 @@ except Exception as e:
|
|
| 40 |
feature_names = ['Feature_1', 'Feature_2', 'Feature_3', 'Feature_4']
|
| 41 |
|
| 42 |
def predict_student_eligibility(*args):
|
| 43 |
-
"""
|
| 44 |
-
Predict student eligibility based on input features
|
| 45 |
-
"""
|
| 46 |
try:
|
| 47 |
if model is None or scaler is None:
|
| 48 |
return "Model not loaded", "N/A", "N/A", create_error_plot()
|
|
@@ -89,9 +93,7 @@ def create_error_plot():
|
|
| 89 |
return fig
|
| 90 |
|
| 91 |
def create_prediction_viz(probability, prediction, input_data):
|
| 92 |
-
"""
|
| 93 |
-
Create visualization for prediction results
|
| 94 |
-
"""
|
| 95 |
try:
|
| 96 |
# Create subplots
|
| 97 |
fig = make_subplots(
|
|
@@ -179,36 +181,8 @@ def create_prediction_viz(probability, prediction, input_data):
|
|
| 179 |
except Exception as e:
|
| 180 |
return create_error_plot()
|
| 181 |
|
| 182 |
-
def create_model_info():
|
| 183 |
-
"""
|
| 184 |
-
Create model information display
|
| 185 |
-
"""
|
| 186 |
-
if metadata:
|
| 187 |
-
info_html = f"""
|
| 188 |
-
<div style="padding: 20px; background-color: #f0f2f6; border-radius: 10px; margin: 10px 0;">
|
| 189 |
-
<h3>🤖 Model Information</h3>
|
| 190 |
-
<ul>
|
| 191 |
-
<li><strong>Model Type:</strong> {metadata.get('model_type', 'CNN')}</li>
|
| 192 |
-
<li><strong>Test Accuracy:</strong> {metadata.get('performance_metrics', {}).get('test_accuracy', 'N/A')}</li>
|
| 193 |
-
<li><strong>AUC Score:</strong> {metadata.get('performance_metrics', {}).get('auc_score', 'N/A')}</li>
|
| 194 |
-
<li><strong>Creation Date:</strong> {metadata.get('creation_date', 'N/A')}</li>
|
| 195 |
-
<li><strong>Features:</strong> {len(feature_names)} input features</li>
|
| 196 |
-
</ul>
|
| 197 |
-
</div>
|
| 198 |
-
"""
|
| 199 |
-
else:
|
| 200 |
-
info_html = """
|
| 201 |
-
<div style="padding: 20px; background-color: #ffebee; border-radius: 10px; margin: 10px 0;">
|
| 202 |
-
<h3>⚠️ Model Information</h3>
|
| 203 |
-
<p>Model artifacts not loaded. Please ensure all required files are uploaded.</p>
|
| 204 |
-
</div>
|
| 205 |
-
"""
|
| 206 |
-
return info_html
|
| 207 |
-
|
| 208 |
def batch_predict(file):
|
| 209 |
-
"""
|
| 210 |
-
Batch prediction from uploaded CSV file
|
| 211 |
-
"""
|
| 212 |
try:
|
| 213 |
if model is None or scaler is None:
|
| 214 |
return "Model not loaded. Please check if all model files are uploaded.", None
|
|
@@ -217,7 +191,7 @@ def batch_predict(file):
|
|
| 217 |
return "Please upload a CSV file.", None
|
| 218 |
|
| 219 |
# Read the uploaded file
|
| 220 |
-
df = pd.read_csv(file
|
| 221 |
|
| 222 |
# Check if all required features are present
|
| 223 |
missing_features = set(feature_names) - set(df.columns)
|
|
@@ -269,169 +243,44 @@ Results saved to: {output_file}
|
|
| 269 |
return f"Error processing file: {str(e)}", None
|
| 270 |
|
| 271 |
# Create Gradio interface
|
| 272 |
-
with gr.Blocks(
|
| 273 |
-
|
| 274 |
-
title="Student Eligibility Prediction",
|
| 275 |
-
css="""
|
| 276 |
-
.gradio-container {
|
| 277 |
-
max-width: 1200px !important;
|
| 278 |
-
}
|
| 279 |
-
.main-header {
|
| 280 |
-
text-align: center;
|
| 281 |
-
padding: 20px;
|
| 282 |
-
background: linear-gradient(45deg, #667eea 0%, #764ba2 100%);
|
| 283 |
-
color: white;
|
| 284 |
-
border-radius: 10px;
|
| 285 |
-
margin-bottom: 20px;
|
| 286 |
-
}
|
| 287 |
-
.feature-input {
|
| 288 |
-
margin: 5px 0;
|
| 289 |
-
}
|
| 290 |
-
"""
|
| 291 |
-
) as demo:
|
| 292 |
-
|
| 293 |
-
# Header
|
| 294 |
-
gr.HTML("""
|
| 295 |
-
<div class="main-header">
|
| 296 |
-
<h1>🎓 Student Eligibility Prediction System</h1>
|
| 297 |
-
<p>AI-powered CNN model for predicting student eligibility with advanced analytics</p>
|
| 298 |
-
</div>
|
| 299 |
-
""")
|
| 300 |
|
| 301 |
with gr.Tabs():
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
with gr.Row():
|
| 307 |
-
with gr.Column(scale=1):
|
| 308 |
-
gr.Markdown("#### Input Features")
|
| 309 |
-
# Create input components dynamically based on features
|
| 310 |
-
inputs = []
|
| 311 |
-
for i, feature in enumerate(feature_names):
|
| 312 |
-
inputs.append(
|
| 313 |
-
gr.Number(
|
| 314 |
-
label=f"📊 {feature}",
|
| 315 |
-
value=75 + i*5, # Different default values
|
| 316 |
-
minimum=0,
|
| 317 |
-
maximum=100,
|
| 318 |
-
step=0.1,
|
| 319 |
-
elem_classes=["feature-input"]
|
| 320 |
-
)
|
| 321 |
-
)
|
| 322 |
-
|
| 323 |
-
predict_btn = gr.Button(
|
| 324 |
-
"🔮 Predict Eligibility",
|
| 325 |
-
variant="primary",
|
| 326 |
-
size="lg",
|
| 327 |
-
elem_id="predict-btn"
|
| 328 |
-
)
|
| 329 |
-
|
| 330 |
-
with gr.Column(scale=2):
|
| 331 |
-
gr.Markdown("#### Prediction Results")
|
| 332 |
-
with gr.Row():
|
| 333 |
-
prediction_output = gr.Textbox(label="🎯 Prediction", scale=1)
|
| 334 |
-
probability_output = gr.Textbox(label="📊 Probability", scale=1)
|
| 335 |
-
confidence_output = gr.Textbox(label="🎯 Confidence", scale=1)
|
| 336 |
-
|
| 337 |
-
prediction_plot = gr.Plot(label="📈 Prediction Visualization")
|
| 338 |
-
|
| 339 |
-
# Model information
|
| 340 |
-
gr.HTML(create_model_info())
|
| 341 |
-
|
| 342 |
-
# Batch Prediction Tab
|
| 343 |
-
with gr.TabItem("📊 Batch Prediction"):
|
| 344 |
-
gr.Markdown("### Upload a CSV file for batch predictions")
|
| 345 |
-
gr.Markdown(f"**Required columns:** `{', '.join(feature_names)}`")
|
| 346 |
|
| 347 |
-
|
| 348 |
-
gr.Markdown("""
|
| 349 |
-
**Example CSV format:**
|
| 350 |
-
```csv
|
| 351 |
-
Feature_1,Feature_2,Feature_3,Feature_4
|
| 352 |
-
85,90,75,88
|
| 353 |
-
92,78,85,91
|
| 354 |
-
```
|
| 355 |
-
""")
|
| 356 |
|
| 357 |
with gr.Row():
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
file_types=[".csv"],
|
| 362 |
-
type="file"
|
| 363 |
-
)
|
| 364 |
-
batch_predict_btn = gr.Button(
|
| 365 |
-
"📊 Process Batch",
|
| 366 |
-
variant="primary",
|
| 367 |
-
size="lg"
|
| 368 |
-
)
|
| 369 |
-
|
| 370 |
-
with gr.Column():
|
| 371 |
-
batch_output = gr.Textbox(
|
| 372 |
-
label="📋 Batch Results Summary",
|
| 373 |
-
lines=15,
|
| 374 |
-
max_lines=20
|
| 375 |
-
)
|
| 376 |
-
download_file = gr.File(label="⬇️ Download Results")
|
| 377 |
-
|
| 378 |
-
# Model Analytics Tab
|
| 379 |
-
with gr.TabItem("📈 Model Analytics"):
|
| 380 |
-
gr.Markdown("### Model Performance Metrics")
|
| 381 |
|
| 382 |
-
|
| 383 |
-
# Performance metrics
|
| 384 |
-
metrics_data = metadata['performance_metrics']
|
| 385 |
-
metrics_df = pd.DataFrame([{
|
| 386 |
-
'Metric': k.replace('_', ' ').title(),
|
| 387 |
-
'Value': f"{v:.4f}" if isinstance(v, float) else str(v)
|
| 388 |
-
} for k, v in metrics_data.items()])
|
| 389 |
-
|
| 390 |
-
gr.Dataframe(
|
| 391 |
-
metrics_df,
|
| 392 |
-
label="🎯 Performance Metrics",
|
| 393 |
-
headers=['Metric', 'Value']
|
| 394 |
-
)
|
| 395 |
-
else:
|
| 396 |
-
gr.Markdown("⚠️ **Performance metrics not available**")
|
| 397 |
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 406 |
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
- **Input Shape**: {metadata.get('input_shape', 'N/A')}
|
| 413 |
-
- **Total Features**: {len(feature_names)}
|
| 414 |
-
- **Output Classes**: {len(metadata.get('target_classes', {}))}
|
| 415 |
-
"""
|
| 416 |
-
gr.Markdown(arch_info)
|
| 417 |
-
|
| 418 |
-
# Event handlers
|
| 419 |
-
predict_btn.click(
|
| 420 |
-
fn=predict_student_eligibility,
|
| 421 |
-
inputs=inputs,
|
| 422 |
-
outputs=[prediction_output, probability_output, confidence_output, prediction_plot]
|
| 423 |
-
)
|
| 424 |
-
|
| 425 |
-
batch_predict_btn.click(
|
| 426 |
-
fn=batch_predict,
|
| 427 |
-
inputs=[file_input],
|
| 428 |
-
outputs=[batch_output, download_file]
|
| 429 |
-
)
|
| 430 |
|
| 431 |
-
|
| 432 |
-
if __name__ == "__main__":
|
| 433 |
-
demo.launch(
|
| 434 |
-
share=False,
|
| 435 |
-
server_name="0.0.0.0",
|
| 436 |
-
server_port=7860
|
| 437 |
-
)
|
|
|
|
| 4 |
import pickle
|
| 5 |
import json
|
| 6 |
import tensorflow as tf
|
| 7 |
+
from tensorflow.keras.models import load_model, model_from_json
|
| 8 |
import plotly.graph_objects as go
|
|
|
|
|
|
|
| 9 |
import os
|
| 10 |
|
| 11 |
+
# Set environment variable to avoid oneDNN warnings
|
| 12 |
+
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
|
| 13 |
+
|
| 14 |
# Load model artifacts
|
| 15 |
def load_model_artifacts():
|
| 16 |
try:
|
| 17 |
+
# Load model architecture first
|
| 18 |
+
with open('model_architecture.json', 'r') as json_file:
|
| 19 |
+
model_json = json_file.read()
|
| 20 |
+
model = model_from_json(model_json)
|
| 21 |
+
|
| 22 |
+
# Then load weights
|
| 23 |
+
model.load_weights('best_model.h5')
|
| 24 |
|
| 25 |
# Load the scaler
|
| 26 |
with open('scaler.pkl', 'rb') as f:
|
|
|
|
| 46 |
feature_names = ['Feature_1', 'Feature_2', 'Feature_3', 'Feature_4']
|
| 47 |
|
| 48 |
def predict_student_eligibility(*args):
|
| 49 |
+
"""Predict student eligibility based on input features"""
|
|
|
|
|
|
|
| 50 |
try:
|
| 51 |
if model is None or scaler is None:
|
| 52 |
return "Model not loaded", "N/A", "N/A", create_error_plot()
|
|
|
|
| 93 |
return fig
|
| 94 |
|
| 95 |
def create_prediction_viz(probability, prediction, input_data):
|
| 96 |
+
"""Create visualization for prediction results"""
|
|
|
|
|
|
|
| 97 |
try:
|
| 98 |
# Create subplots
|
| 99 |
fig = make_subplots(
|
|
|
|
| 181 |
except Exception as e:
|
| 182 |
return create_error_plot()
|
| 183 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
def batch_predict(file):
|
| 185 |
+
"""Batch prediction from uploaded CSV file"""
|
|
|
|
|
|
|
| 186 |
try:
|
| 187 |
if model is None or scaler is None:
|
| 188 |
return "Model not loaded. Please check if all model files are uploaded.", None
|
|
|
|
| 191 |
return "Please upload a CSV file.", None
|
| 192 |
|
| 193 |
# Read the uploaded file
|
| 194 |
+
df = pd.read_csv(file)
|
| 195 |
|
| 196 |
# Check if all required features are present
|
| 197 |
missing_features = set(feature_names) - set(df.columns)
|
|
|
|
| 243 |
return f"Error processing file: {str(e)}", None
|
| 244 |
|
| 245 |
# Create Gradio interface
|
| 246 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 247 |
+
gr.Markdown("# 🎓 Student Eligibility Prediction")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
|
| 249 |
with gr.Tabs():
|
| 250 |
+
with gr.Tab("Single Prediction"):
|
| 251 |
+
inputs = []
|
| 252 |
+
for feature in feature_names:
|
| 253 |
+
inputs.append(gr.Number(label=feature, value=75))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 254 |
|
| 255 |
+
predict_btn = gr.Button("Predict")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 256 |
|
| 257 |
with gr.Row():
|
| 258 |
+
prediction = gr.Textbox(label="Prediction")
|
| 259 |
+
probability = gr.Textbox(label="Probability")
|
| 260 |
+
confidence = gr.Textbox(label="Confidence")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 261 |
|
| 262 |
+
plot = gr.Plot()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
|
| 264 |
+
predict_btn.click(
|
| 265 |
+
predict_student_eligibility,
|
| 266 |
+
inputs=inputs,
|
| 267 |
+
outputs=[prediction, probability, confidence, plot]
|
| 268 |
+
)
|
| 269 |
+
|
| 270 |
+
with gr.Tab("Batch Prediction"):
|
| 271 |
+
file_input = gr.File(
|
| 272 |
+
label="Upload CSV",
|
| 273 |
+
file_types=[".csv"],
|
| 274 |
+
type="filepath" # Fixed: Changed from 'file' to 'filepath'
|
| 275 |
+
)
|
| 276 |
+
batch_btn = gr.Button("Process Batch")
|
| 277 |
+
batch_output = gr.Textbox(label="Results")
|
| 278 |
+
download = gr.File(label="Download")
|
| 279 |
|
| 280 |
+
batch_btn.click(
|
| 281 |
+
batch_predict,
|
| 282 |
+
inputs=file_input,
|
| 283 |
+
outputs=[batch_output, download]
|
| 284 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 285 |
|
| 286 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|