Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,56 +6,81 @@ import json
|
|
| 6 |
import tensorflow as tf
|
| 7 |
from tensorflow.keras.models import model_from_json
|
| 8 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
# Initialize model components
|
| 11 |
model = None
|
| 12 |
scaler = None
|
| 13 |
metadata = {}
|
| 14 |
feature_names = []
|
|
|
|
| 15 |
|
| 16 |
def load_model():
|
| 17 |
-
global model, scaler, metadata, feature_names
|
| 18 |
|
| 19 |
try:
|
| 20 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
with open('model_architecture.json', 'r') as json_file:
|
| 22 |
model_json = json_file.read()
|
| 23 |
model = model_from_json(model_json)
|
| 24 |
|
| 25 |
-
|
| 26 |
model.load_weights('final_model.h5')
|
| 27 |
|
| 28 |
-
|
| 29 |
with open('scaler.pkl', 'rb') as f:
|
| 30 |
scaler = pickle.load(f)
|
| 31 |
|
| 32 |
-
|
| 33 |
with open('metadata.json', 'r') as f:
|
| 34 |
metadata = json.load(f)
|
| 35 |
-
feature_names = metadata
|
| 36 |
|
| 37 |
-
|
| 38 |
-
|
|
|
|
|
|
|
| 39 |
except Exception as e:
|
| 40 |
-
|
|
|
|
| 41 |
|
| 42 |
# Load model at startup
|
| 43 |
load_model()
|
| 44 |
|
| 45 |
def predict(*args):
|
| 46 |
try:
|
| 47 |
-
if
|
| 48 |
-
raise
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
# Create input dictionary
|
| 51 |
-
input_data = {
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
# Scale features
|
| 55 |
scaled_input = scaler.transform(input_df)
|
| 56 |
|
| 57 |
# Predict
|
| 58 |
-
probability = float(model.predict(scaled_input)[0][0])
|
| 59 |
prediction = "Eligible" if probability > 0.5 else "Not Eligible"
|
| 60 |
confidence = abs(probability - 0.5) * 2
|
| 61 |
|
|
@@ -64,22 +89,48 @@ def predict(*args):
|
|
| 64 |
"Probability": f"{probability:.4f}",
|
| 65 |
"Confidence": f"{confidence:.4f}"
|
| 66 |
}
|
|
|
|
| 67 |
except Exception as e:
|
|
|
|
| 68 |
return {"Error": str(e)}
|
| 69 |
|
| 70 |
# Create Gradio interface
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
gr.
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
if __name__ == "__main__":
|
| 85 |
-
|
|
|
|
| 6 |
import tensorflow as tf
|
| 7 |
from tensorflow.keras.models import model_from_json
|
| 8 |
import os
|
| 9 |
+
import logging
|
| 10 |
+
|
| 11 |
+
# Configure logging
|
| 12 |
+
logging.basicConfig(level=logging.INFO)
|
| 13 |
+
logger = logging.getLogger(__name__)
|
| 14 |
|
| 15 |
# Initialize model components
|
| 16 |
model = None
|
| 17 |
scaler = None
|
| 18 |
metadata = {}
|
| 19 |
feature_names = []
|
| 20 |
+
model_loaded = False
|
| 21 |
|
| 22 |
def load_model():
|
| 23 |
+
global model, scaler, metadata, feature_names, model_loaded
|
| 24 |
|
| 25 |
try:
|
| 26 |
+
# Verify all required files exist
|
| 27 |
+
required_files = ['model_architecture.json', 'final_model.h5', 'scaler.pkl', 'metadata.json']
|
| 28 |
+
for file in required_files:
|
| 29 |
+
if not os.path.exists(file):
|
| 30 |
+
raise FileNotFoundError(f"Missing required file: {file}")
|
| 31 |
+
|
| 32 |
+
logger.info("Loading model architecture...")
|
| 33 |
with open('model_architecture.json', 'r') as json_file:
|
| 34 |
model_json = json_file.read()
|
| 35 |
model = model_from_json(model_json)
|
| 36 |
|
| 37 |
+
logger.info("Loading model weights...")
|
| 38 |
model.load_weights('final_model.h5')
|
| 39 |
|
| 40 |
+
logger.info("Loading scaler...")
|
| 41 |
with open('scaler.pkl', 'rb') as f:
|
| 42 |
scaler = pickle.load(f)
|
| 43 |
|
| 44 |
+
logger.info("Loading metadata...")
|
| 45 |
with open('metadata.json', 'r') as f:
|
| 46 |
metadata = json.load(f)
|
| 47 |
+
feature_names = metadata.get('feature_names', [])
|
| 48 |
|
| 49 |
+
model_loaded = True
|
| 50 |
+
logger.info("β
Model loaded successfully!")
|
| 51 |
+
logger.info(f"Features: {feature_names}")
|
| 52 |
+
|
| 53 |
except Exception as e:
|
| 54 |
+
logger.error(f"β Model loading failed: {str(e)}")
|
| 55 |
+
model_loaded = False
|
| 56 |
|
| 57 |
# Load model at startup
|
| 58 |
load_model()
|
| 59 |
|
| 60 |
def predict(*args):
|
| 61 |
try:
|
| 62 |
+
if not model_loaded:
|
| 63 |
+
raise RuntimeError("Model failed to load. Check server logs for details.")
|
| 64 |
+
|
| 65 |
+
if len(args) != len(feature_names):
|
| 66 |
+
raise ValueError(f"Expected {len(feature_names)} features, got {len(args)}")
|
| 67 |
|
| 68 |
# Create input dictionary
|
| 69 |
+
input_data = {}
|
| 70 |
+
for i, val in enumerate(args):
|
| 71 |
+
try:
|
| 72 |
+
input_data[feature_names[i]] = float(val)
|
| 73 |
+
except ValueError:
|
| 74 |
+
raise ValueError(f"Invalid value for {feature_names[i]}: {val}")
|
| 75 |
+
|
| 76 |
+
# Create DataFrame
|
| 77 |
+
input_df = pd.DataFrame([input_data], columns=feature_names)
|
| 78 |
|
| 79 |
# Scale features
|
| 80 |
scaled_input = scaler.transform(input_df)
|
| 81 |
|
| 82 |
# Predict
|
| 83 |
+
probability = float(model.predict(scaled_input, verbose=0)[0][0])
|
| 84 |
prediction = "Eligible" if probability > 0.5 else "Not Eligible"
|
| 85 |
confidence = abs(probability - 0.5) * 2
|
| 86 |
|
|
|
|
| 89 |
"Probability": f"{probability:.4f}",
|
| 90 |
"Confidence": f"{confidence:.4f}"
|
| 91 |
}
|
| 92 |
+
|
| 93 |
except Exception as e:
|
| 94 |
+
logger.error(f"Prediction error: {str(e)}")
|
| 95 |
return {"Error": str(e)}
|
| 96 |
|
| 97 |
# Create Gradio interface
|
| 98 |
+
with gr.Blocks(title="Student Eligibility Predictor") as demo:
|
| 99 |
+
gr.Markdown("# π Student Eligibility Predictor")
|
| 100 |
+
gr.Markdown("Predict student eligibility based on academic performance metrics")
|
| 101 |
+
|
| 102 |
+
with gr.Row():
|
| 103 |
+
with gr.Column():
|
| 104 |
+
input_components = [gr.Number(label=name) for name in feature_names]
|
| 105 |
+
predict_btn = gr.Button("Predict", variant="primary")
|
| 106 |
+
with gr.Column():
|
| 107 |
+
prediction_output = gr.Textbox(label="Prediction")
|
| 108 |
+
probability_output = gr.Textbox(label="Probability")
|
| 109 |
+
confidence_output = gr.Textbox(label="Confidence")
|
| 110 |
+
|
| 111 |
+
# Add examples if features exist
|
| 112 |
+
if len(feature_names) > 0:
|
| 113 |
+
examples = []
|
| 114 |
+
if len(feature_names) >= 3:
|
| 115 |
+
examples.append([75, 80, 85] + [0]*(len(feature_names)-3))
|
| 116 |
+
elif len(feature_names) == 2:
|
| 117 |
+
examples.append([75, 80])
|
| 118 |
+
else:
|
| 119 |
+
examples.append([75])
|
| 120 |
+
|
| 121 |
+
gr.Examples(
|
| 122 |
+
examples=examples,
|
| 123 |
+
inputs=input_components,
|
| 124 |
+
outputs=[prediction_output, probability_output, confidence_output],
|
| 125 |
+
fn=predict,
|
| 126 |
+
cache_examples=False
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
predict_btn.click(
|
| 130 |
+
fn=predict,
|
| 131 |
+
inputs=input_components,
|
| 132 |
+
outputs=[prediction_output, probability_output, confidence_output]
|
| 133 |
+
)
|
| 134 |
|
| 135 |
if __name__ == "__main__":
|
| 136 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|