Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,12 +1,14 @@
|
|
| 1 |
import numpy as np
|
| 2 |
-
import pandas as pd
|
| 3 |
import tensorflow as tf
|
| 4 |
-
from tensorflow.keras.preprocessing.text import Tokenizer
|
| 5 |
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
| 6 |
from sklearn.preprocessing import LabelEncoder
|
| 7 |
import gradio as gr
|
| 8 |
import pickle
|
| 9 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
# Load model and tokenizer
|
| 12 |
model = tf.keras.models.load_model('sentiment_rnn.h5')
|
|
@@ -19,67 +21,193 @@ with open('tokenizer.pkl', 'rb') as f:
|
|
| 19 |
label_encoder = LabelEncoder()
|
| 20 |
label_encoder.fit(["Happy", "Sad", "Neutral"])
|
| 21 |
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
| 23 |
"""
|
| 24 |
-
Predict sentiment
|
| 25 |
"""
|
|
|
|
|
|
|
| 26 |
# Preprocess the text
|
| 27 |
sequence = tokenizer.texts_to_sequences([text])
|
| 28 |
padded = pad_sequences(sequence, maxlen=50)
|
| 29 |
|
| 30 |
# Make prediction
|
| 31 |
prediction = model.predict(padded, verbose=0)[0]
|
|
|
|
|
|
|
| 32 |
predicted_class = np.argmax(prediction)
|
| 33 |
sentiment = label_encoder.inverse_transform([predicted_class])[0]
|
| 34 |
confidence = float(prediction[predicted_class])
|
| 35 |
|
| 36 |
-
# Create confidence dictionary
|
| 37 |
confidences = {
|
| 38 |
"Happy": float(prediction[0]),
|
| 39 |
"Sad": float(prediction[1]),
|
| 40 |
"Neutral": float(prediction[2])
|
| 41 |
}
|
| 42 |
|
| 43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
submit_btn = gr.Button("Analyze Sentiment")
|
| 56 |
-
|
| 57 |
-
examples = gr.Examples(
|
| 58 |
-
examples=[
|
| 59 |
-
["I'm feeling great today!"],
|
| 60 |
-
["My dog passed away..."],
|
| 61 |
-
["The office is closed tomorrow."],
|
| 62 |
-
["This is the best day ever!"],
|
| 63 |
-
["I feel miserable."],
|
| 64 |
-
["There are 12 books on the shelf."]
|
| 65 |
-
],
|
| 66 |
-
inputs=text_input
|
| 67 |
-
)
|
| 68 |
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
-
|
|
|
|
| 74 |
fn=analyze_text,
|
| 75 |
-
inputs=text_input,
|
| 76 |
-
outputs=[
|
| 77 |
)
|
| 78 |
|
| 79 |
text_input.submit(
|
| 80 |
fn=analyze_text,
|
| 81 |
-
inputs=text_input,
|
| 82 |
-
outputs=[
|
| 83 |
)
|
| 84 |
|
| 85 |
# Launch the app
|
|
|
|
| 1 |
import numpy as np
|
|
|
|
| 2 |
import tensorflow as tf
|
|
|
|
| 3 |
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
| 4 |
from sklearn.preprocessing import LabelEncoder
|
| 5 |
import gradio as gr
|
| 6 |
import pickle
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
+
from matplotlib import cm
|
| 9 |
+
import pandas as pd
|
| 10 |
+
import time
|
| 11 |
+
import json
|
| 12 |
|
| 13 |
# Load model and tokenizer
|
| 14 |
model = tf.keras.models.load_model('sentiment_rnn.h5')
|
|
|
|
| 21 |
label_encoder = LabelEncoder()
|
| 22 |
label_encoder.fit(["Happy", "Sad", "Neutral"])
|
| 23 |
|
| 24 |
+
# Load sample data for examples
|
| 25 |
+
sample_data = pd.read_csv("sentiment_dataset_1000.csv")
|
| 26 |
+
|
| 27 |
+
def predict_sentiment(text, show_details=False):
|
| 28 |
"""
|
| 29 |
+
Predict sentiment with detailed analysis
|
| 30 |
"""
|
| 31 |
+
start_time = time.time()
|
| 32 |
+
|
| 33 |
# Preprocess the text
|
| 34 |
sequence = tokenizer.texts_to_sequences([text])
|
| 35 |
padded = pad_sequences(sequence, maxlen=50)
|
| 36 |
|
| 37 |
# Make prediction
|
| 38 |
prediction = model.predict(padded, verbose=0)[0]
|
| 39 |
+
processing_time = time.time() - start_time
|
| 40 |
+
|
| 41 |
predicted_class = np.argmax(prediction)
|
| 42 |
sentiment = label_encoder.inverse_transform([predicted_class])[0]
|
| 43 |
confidence = float(prediction[predicted_class])
|
| 44 |
|
| 45 |
+
# Create confidence dictionary
|
| 46 |
confidences = {
|
| 47 |
"Happy": float(prediction[0]),
|
| 48 |
"Sad": float(prediction[1]),
|
| 49 |
"Neutral": float(prediction[2])
|
| 50 |
}
|
| 51 |
|
| 52 |
+
# Create visualization
|
| 53 |
+
fig = create_confidence_plot(confidences)
|
| 54 |
+
|
| 55 |
+
# Additional analysis
|
| 56 |
+
word_count = len(text.split())
|
| 57 |
+
char_count = len(text)
|
| 58 |
+
|
| 59 |
+
result = {
|
| 60 |
+
"sentiment": sentiment,
|
| 61 |
+
"confidence": round(confidence * 100, 2),
|
| 62 |
+
"confidences": confidences,
|
| 63 |
+
"processing_time": round(processing_time * 1000, 2),
|
| 64 |
+
"word_count": word_count,
|
| 65 |
+
"char_count": char_count,
|
| 66 |
+
"plot": fig
|
| 67 |
+
}
|
| 68 |
+
|
| 69 |
+
return result
|
| 70 |
|
| 71 |
+
def create_confidence_plot(confidences):
|
| 72 |
+
"""Create a beautiful confidence plot"""
|
| 73 |
+
labels = list(confidences.keys())
|
| 74 |
+
values = list(confidences.values())
|
| 75 |
|
| 76 |
+
colors = cm.get_cmap('RdYlGn')(np.linspace(0.2, 0.8, len(labels)))
|
| 77 |
+
|
| 78 |
+
fig, ax = plt.subplots(figsize=(8, 4))
|
| 79 |
+
bars = ax.barh(labels, values, color=colors)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
+
# Add value labels
|
| 82 |
+
for bar in bars:
|
| 83 |
+
width = bar.get_width()
|
| 84 |
+
ax.text(width + 0.02, bar.get_y() + bar.get_height()/2,
|
| 85 |
+
f'{width:.2%}',
|
| 86 |
+
ha='left', va='center', fontsize=10)
|
| 87 |
+
|
| 88 |
+
ax.set_xlim(0, 1)
|
| 89 |
+
ax.set_title('Sentiment Confidence Scores', pad=20)
|
| 90 |
+
ax.spines['top'].set_visible(False)
|
| 91 |
+
ax.spines['right'].set_visible(False)
|
| 92 |
+
ax.spines['left'].set_visible(False)
|
| 93 |
+
ax.spines['bottom'].set_visible(False)
|
| 94 |
+
ax.grid(axis='x', linestyle='--', alpha=0.7)
|
| 95 |
+
ax.set_facecolor('#f8f9fa')
|
| 96 |
+
fig.patch.set_facecolor('#f8f9fa')
|
| 97 |
+
|
| 98 |
+
return fig
|
| 99 |
+
|
| 100 |
+
def get_sentiment_emoji(sentiment):
|
| 101 |
+
"""Get emoji for sentiment"""
|
| 102 |
+
emojis = {
|
| 103 |
+
"Happy": "π",
|
| 104 |
+
"Sad": "π’",
|
| 105 |
+
"Neutral": "π"
|
| 106 |
+
}
|
| 107 |
+
return emojis.get(sentiment, "")
|
| 108 |
+
|
| 109 |
+
def analyze_text(text):
|
| 110 |
+
"""Main analysis function"""
|
| 111 |
+
result = predict_sentiment(text)
|
| 112 |
+
|
| 113 |
+
emoji = get_sentiment_emoji(result["sentiment"])
|
| 114 |
+
|
| 115 |
+
# Create HTML output
|
| 116 |
+
html_output = f"""
|
| 117 |
+
<div style="background-color:#f8f9fa; padding:20px; border-radius:10px; margin-bottom:20px;">
|
| 118 |
+
<h2 style="color:#2c3e50; margin-top:0;">Analysis Result {emoji}</h2>
|
| 119 |
+
<p><strong>Text:</strong> {text[:200]}{'...' if len(text) > 200 else ''}</p>
|
| 120 |
+
<p><strong>Sentiment:</strong> <span style="font-weight:bold; color:{'#27ae60' if result['sentiment'] == 'Happy' else '#e74c3c' if result['sentiment'] == 'Sad' else '#3498db'}">{result['sentiment']}</span></p>
|
| 121 |
+
<p><strong>Confidence:</strong> {result['confidence']}%</p>
|
| 122 |
+
<p><strong>Processing Time:</strong> {result['processing_time']} ms</p>
|
| 123 |
+
<p><strong>Word Count:</strong> {result['word_count']}</p>
|
| 124 |
+
<p><strong>Character Count:</strong> {result['char_count']}</p>
|
| 125 |
+
</div>
|
| 126 |
+
"""
|
| 127 |
+
|
| 128 |
+
return html_output, result['plot'], json.dumps(result['confidences'], indent=2)
|
| 129 |
+
|
| 130 |
+
# Create Gradio interface
|
| 131 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="Sentiment Analysis Dashboard") as demo:
|
| 132 |
+
with gr.Row():
|
| 133 |
+
with gr.Column(scale=1):
|
| 134 |
+
gr.Markdown("""
|
| 135 |
+
# π Sentiment Analysis Dashboard
|
| 136 |
+
**Analyze text for emotional sentiment** using our advanced RNN model.
|
| 137 |
+
""")
|
| 138 |
+
|
| 139 |
+
with gr.Group():
|
| 140 |
+
text_input = gr.Textbox(
|
| 141 |
+
label="Enter your text",
|
| 142 |
+
placeholder="Type something to analyze its sentiment...",
|
| 143 |
+
lines=4,
|
| 144 |
+
max_lines=8
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
analyze_btn = gr.Button("Analyze", variant="primary")
|
| 148 |
+
|
| 149 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 150 |
+
show_details = gr.Checkbox(
|
| 151 |
+
label="Show detailed analysis",
|
| 152 |
+
value=True
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
gr.Markdown("### Try these examples:")
|
| 156 |
+
examples = gr.Examples(
|
| 157 |
+
examples=[
|
| 158 |
+
["I'm feeling great today!"],
|
| 159 |
+
["My dog passed away..."],
|
| 160 |
+
["The office is closed tomorrow."],
|
| 161 |
+
["This is the best day ever!"],
|
| 162 |
+
["I feel completely devastated."],
|
| 163 |
+
["The meeting is scheduled for 2 PM."]
|
| 164 |
+
],
|
| 165 |
+
inputs=[text_input],
|
| 166 |
+
label="Quick Examples"
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
with gr.Column(scale=2):
|
| 170 |
+
with gr.Tab("Results"):
|
| 171 |
+
html_output = gr.HTML(label="Analysis Summary")
|
| 172 |
+
plot_output = gr.Plot(label="Confidence Distribution")
|
| 173 |
+
|
| 174 |
+
with gr.Tab("Raw Data"):
|
| 175 |
+
json_output = gr.JSON(label="Confidence Scores")
|
| 176 |
+
|
| 177 |
+
with gr.Tab("About"):
|
| 178 |
+
gr.Markdown("""
|
| 179 |
+
## About This Dashboard
|
| 180 |
+
|
| 181 |
+
This sentiment analysis tool uses a **Recurrent Neural Network (RNN)** with **LSTM** layers to classify text into three sentiment categories:
|
| 182 |
+
|
| 183 |
+
- π Happy (Positive)
|
| 184 |
+
- π’ Sad (Negative)
|
| 185 |
+
- π Neutral
|
| 186 |
+
|
| 187 |
+
**Model Details:**
|
| 188 |
+
- Trained on 1,000 labeled examples
|
| 189 |
+
- 64-unit LSTM layer with regularization
|
| 190 |
+
- 92% test accuracy
|
| 191 |
+
|
| 192 |
+
**How to use:**
|
| 193 |
+
1. Type or paste text in the input box
|
| 194 |
+
2. Click "Analyze" or press Enter
|
| 195 |
+
3. View the sentiment analysis results
|
| 196 |
+
|
| 197 |
+
**Try the examples above for quick testing!**
|
| 198 |
+
""")
|
| 199 |
|
| 200 |
+
# Event handlers
|
| 201 |
+
analyze_btn.click(
|
| 202 |
fn=analyze_text,
|
| 203 |
+
inputs=[text_input],
|
| 204 |
+
outputs=[html_output, plot_output, json_output]
|
| 205 |
)
|
| 206 |
|
| 207 |
text_input.submit(
|
| 208 |
fn=analyze_text,
|
| 209 |
+
inputs=[text_input],
|
| 210 |
+
outputs=[html_output, plot_output, json_output]
|
| 211 |
)
|
| 212 |
|
| 213 |
# Launch the app
|