Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import os | |
| import spaces | |
| from transformers import GemmaTokenizer, AutoModelForCausalLM | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
| from threading import Thread | |
| # Set an environment variable | |
| HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
| DESCRIPTION = ''' | |
| <div> | |
| <h1 style="text-align: center;">HugCode</h1> | |
| <p>CodeLLaMA sfted on <a href="https://huggingface.co/datasets/nuojohnchen/hugcode-codesft"><b>HugCode</b></a> data. Made in 2023.9. </p> | |
| </div> | |
| ''' | |
| # LICENSE = """ | |
| # <p/> | |
| # --- | |
| # Built with Meta Llama 3 | |
| # """ | |
| PLACEHOLDER = """ | |
| <div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;"> | |
| <img src="https://ysharma-dummy-chat-app.hf.space/file=/tmp/gradio/8e75e61cc9bab22b7ce3dec85ab0e6db1da5d107/Meta_lockup_positive%20primary_RGB.jpg" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55; "> | |
| <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">HugCode</h1> | |
| <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me code questions (English/Chinese).</p> | |
| </div> | |
| """ | |
| css = """ | |
| h1 { | |
| text-align: center; | |
| display: block; | |
| } | |
| #duplicate-button { | |
| margin: auto; | |
| color: white; | |
| background: #1565c0; | |
| border-radius: 100vh; | |
| } | |
| """ | |
| # Load the tokenizer and model | |
| tokenizer = AutoTokenizer.from_pretrained("nuojohnchen/codellama-7b-sft-v1.3") | |
| model = AutoModelForCausalLM.from_pretrained("nuojohnchen/codellama-7b-sft-v1.3", device_map="auto") # to("cuda:0") | |
| terminators = [ | |
| tokenizer.eos_token_id, | |
| tokenizer.convert_tokens_to_ids("<|eot_id|>") | |
| ] | |
| def chat_llama3_8b(message: str, | |
| history: list, | |
| temperature: float, | |
| max_new_tokens: int | |
| ) -> str: | |
| """ | |
| Generate a streaming response using the llama3-8b model. | |
| Args: | |
| message (str): The input message. | |
| history (list): The conversation history used by ChatInterface. | |
| temperature (float): The temperature for generating the response. | |
| max_new_tokens (int): The maximum number of new tokens to generate. | |
| Returns: | |
| str: The generated response. | |
| """ | |
| # Build conversation as pure array format | |
| history_messages = [] | |
| for user, assistant in history: | |
| history_messages.extend(assistant) | |
| # conversation = [ | |
| # message, # 当前消息 | |
| # history_messages # 历史消息数组 | |
| # ] | |
| conversation = "" | |
| for user, assistant in history: | |
| conversation += f"User: {user}\nAssistant: {assistant}<|endoftext|>\n" | |
| conversation += f"User: {message}\nAssistant: " | |
| tokenizer.chat_template = "User:{query}\nAssistant:{response}<|endoftext|>" | |
| input_ids = tokenizer.encode(conversation, return_tensors="pt").to(model.device) | |
| streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) | |
| generate_kwargs = dict( | |
| input_ids= input_ids, | |
| streamer=streamer, | |
| max_new_tokens=max_new_tokens, | |
| do_sample=True, | |
| temperature=temperature, | |
| eos_token_id=terminators, | |
| ) | |
| # This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash. | |
| if temperature == 0: | |
| generate_kwargs['do_sample'] = False | |
| t = Thread(target=model.generate, kwargs=generate_kwargs) | |
| t.start() | |
| outputs = [] | |
| for text in streamer: | |
| outputs.append(text) | |
| #print(outputs) | |
| yield "".join(outputs) | |
| # Gradio block | |
| chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface') | |
| with gr.Blocks(fill_height=True, css=css) as demo: | |
| gr.Markdown(DESCRIPTION) | |
| # gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button") | |
| gr.ChatInterface( | |
| fn=chat_llama3_8b, | |
| chatbot=chatbot, | |
| fill_height=True, | |
| additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), | |
| additional_inputs=[ | |
| gr.Slider(minimum=0, | |
| maximum=1, | |
| step=0.1, | |
| value=0.95, | |
| label="Temperature", | |
| render=False), | |
| gr.Slider(minimum=128, | |
| maximum=4096, | |
| step=1, | |
| value=512, | |
| label="Max new tokens", | |
| render=False ), | |
| ], | |
| examples=[ | |
| ['Implement a function to reverse a string.'], | |
| ['Sort a list of numbers in ascending order.'], | |
| ['Output Fibonacci sequence.'] | |
| ], | |
| cache_examples=False, | |
| ) | |
| # gr.Markdown(LICENSE) | |
| if __name__ == "__main__": | |
| demo.launch() |