Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			L40S
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			L40S
	Difix Model Release
Browse files- .gitattributes +1 -35
- Dockerfile +56 -0
- README.md +1 -4
- app.py +317 -4
- assets/example1.png +3 -0
- assets/example2.png +3 -0
- pipeline_difix.py +1120 -0
- requirements.txt +11 -0
    	
        .gitattributes
    CHANGED
    
    | @@ -1,35 +1 @@ | |
| 1 | 
            -
             | 
| 2 | 
            -
            *.arrow filter=lfs diff=lfs merge=lfs -text
         | 
| 3 | 
            -
            *.bin filter=lfs diff=lfs merge=lfs -text
         | 
| 4 | 
            -
            *.bz2 filter=lfs diff=lfs merge=lfs -text
         | 
| 5 | 
            -
            *.ckpt filter=lfs diff=lfs merge=lfs -text
         | 
| 6 | 
            -
            *.ftz filter=lfs diff=lfs merge=lfs -text
         | 
| 7 | 
            -
            *.gz filter=lfs diff=lfs merge=lfs -text
         | 
| 8 | 
            -
            *.h5 filter=lfs diff=lfs merge=lfs -text
         | 
| 9 | 
            -
            *.joblib filter=lfs diff=lfs merge=lfs -text
         | 
| 10 | 
            -
            *.lfs.* filter=lfs diff=lfs merge=lfs -text
         | 
| 11 | 
            -
            *.mlmodel filter=lfs diff=lfs merge=lfs -text
         | 
| 12 | 
            -
            *.model filter=lfs diff=lfs merge=lfs -text
         | 
| 13 | 
            -
            *.msgpack filter=lfs diff=lfs merge=lfs -text
         | 
| 14 | 
            -
            *.npy filter=lfs diff=lfs merge=lfs -text
         | 
| 15 | 
            -
            *.npz filter=lfs diff=lfs merge=lfs -text
         | 
| 16 | 
            -
            *.onnx filter=lfs diff=lfs merge=lfs -text
         | 
| 17 | 
            -
            *.ot filter=lfs diff=lfs merge=lfs -text
         | 
| 18 | 
            -
            *.parquet filter=lfs diff=lfs merge=lfs -text
         | 
| 19 | 
            -
            *.pb filter=lfs diff=lfs merge=lfs -text
         | 
| 20 | 
            -
            *.pickle filter=lfs diff=lfs merge=lfs -text
         | 
| 21 | 
            -
            *.pkl filter=lfs diff=lfs merge=lfs -text
         | 
| 22 | 
            -
            *.pt filter=lfs diff=lfs merge=lfs -text
         | 
| 23 | 
            -
            *.pth filter=lfs diff=lfs merge=lfs -text
         | 
| 24 | 
            -
            *.rar filter=lfs diff=lfs merge=lfs -text
         | 
| 25 | 
            -
            *.safetensors filter=lfs diff=lfs merge=lfs -text
         | 
| 26 | 
            -
            saved_model/**/* filter=lfs diff=lfs merge=lfs -text
         | 
| 27 | 
            -
            *.tar.* filter=lfs diff=lfs merge=lfs -text
         | 
| 28 | 
            -
            *.tar filter=lfs diff=lfs merge=lfs -text
         | 
| 29 | 
            -
            *.tflite filter=lfs diff=lfs merge=lfs -text
         | 
| 30 | 
            -
            *.tgz filter=lfs diff=lfs merge=lfs -text
         | 
| 31 | 
            -
            *.wasm filter=lfs diff=lfs merge=lfs -text
         | 
| 32 | 
            -
            *.xz filter=lfs diff=lfs merge=lfs -text
         | 
| 33 | 
            -
            *.zip filter=lfs diff=lfs merge=lfs -text
         | 
| 34 | 
            -
            *.zst filter=lfs diff=lfs merge=lfs -text
         | 
| 35 | 
            -
            *tfevents* filter=lfs diff=lfs merge=lfs -text
         | 
|  | |
| 1 | 
            +
            */*.png filter=lfs diff=lfs merge=lfs -text
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
    	
        Dockerfile
    ADDED
    
    | @@ -0,0 +1,56 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Use the exact same base image from the log
         | 
| 2 | 
            +
            FROM docker.io/nvidia/cuda:12.3.2-cudnn9-devel-ubuntu22.04@sha256:fb1ad20f2552f5b3aafb2c9c478ed57da95e2bb027d15218d7a55b3a0e4b4413
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # Set environment variables for non-interactive installation
         | 
| 5 | 
            +
            ENV DEBIAN_FRONTEND=noninteractive
         | 
| 6 | 
            +
            ENV TZ=UTC
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            # Install system dependencies including Python and pip
         | 
| 9 | 
            +
            RUN apt-get update && apt-get install -y \
         | 
| 10 | 
            +
            	python3 python3-pip python3-dev \
         | 
| 11 | 
            +
            	&& rm -rf /var/lib/apt/lists/* 
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            # Setup fakeroot and user 
         | 
| 14 | 
            +
            RUN apt-get update && apt-get install -y fakeroot && \
         | 
| 15 | 
            +
                mv /usr/bin/apt-get /usr/bin/.apt-get && \
         | 
| 16 | 
            +
                echo '#!/usr/bin/env sh\nfakeroot /usr/bin/.apt-get $@' > /usr/bin/apt-get && \
         | 
| 17 | 
            +
                chmod +x /usr/bin/apt-get && \
         | 
| 18 | 
            +
            	rm -rf /var/lib/apt/lists/* && \
         | 
| 19 | 
            +
            	useradd -m -u 1000 user
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            # Set working directory
         | 
| 22 | 
            +
            WORKDIR /home/user/app
         | 
| 23 | 
            +
             | 
| 24 | 
            +
            # Copy requirements.txt and install Python dependencies
         | 
| 25 | 
            +
            COPY requirements.txt /tmp/requirements.txt
         | 
| 26 | 
            +
            RUN pip install --no-cache-dir -r /tmp/requirements.txt
         | 
| 27 | 
            +
             | 
| 28 | 
            +
            # Install additional packages
         | 
| 29 | 
            +
            RUN pip install --no-cache-dir spaces
         | 
| 30 | 
            +
             | 
| 31 | 
            +
            # Install huggingface_hub 
         | 
| 32 | 
            +
            RUN pip install --no-cache-dir huggingface_hub
         | 
| 33 | 
            +
             | 
| 34 | 
            +
            # Set HF_TOKEN from secret and make it available as environment variable
         | 
| 35 | 
            +
            RUN --mount=type=secret,id=HF_TOKEN,mode=0444,required=true \
         | 
| 36 | 
            +
                echo "export HF_TOKEN=$(cat /run/secrets/HF_TOKEN)" > /etc/hf_env && \
         | 
| 37 | 
            +
                chmod +x /etc/hf_env
         | 
| 38 | 
            +
             | 
| 39 | 
            +
            # Create a startup script that sources the environment and runs the app
         | 
| 40 | 
            +
            RUN echo '#!/bin/bash\nsource /etc/hf_env\nexec "$@"' > /usr/local/bin/entrypoint.sh && \
         | 
| 41 | 
            +
                chmod +x /usr/local/bin/entrypoint.sh
         | 
| 42 | 
            +
             | 
| 43 | 
            +
            # Copy only specific project files
         | 
| 44 | 
            +
            COPY --chown=1000:1000 app.py /home/user/app/
         | 
| 45 | 
            +
            COPY --chown=1000:1000 pipeline_difix.py /home/user/app/
         | 
| 46 | 
            +
            COPY --chown=1000:1000 assets/ /home/user/app/assets/
         | 
| 47 | 
            +
             | 
| 48 | 
            +
            # Switch to user
         | 
| 49 | 
            +
            USER user
         | 
| 50 | 
            +
             | 
| 51 | 
            +
            # Expose port for Gradio
         | 
| 52 | 
            +
            EXPOSE 7860
         | 
| 53 | 
            +
             | 
| 54 | 
            +
            # Use the entrypoint script
         | 
| 55 | 
            +
            ENTRYPOINT ["/usr/local/bin/entrypoint.sh"]
         | 
| 56 | 
            +
            CMD ["python3", "app.py"] 
         | 
    	
        README.md
    CHANGED
    
    | @@ -1,11 +1,8 @@ | |
| 1 | 
             
            ---
         | 
| 2 | 
             
            title: Difix3D
         | 
| 3 | 
            -
            emoji: 📉
         | 
| 4 | 
             
            colorFrom: green
         | 
| 5 | 
             
            colorTo: indigo
         | 
| 6 | 
            -
            sdk:  | 
| 7 | 
            -
            sdk_version: 5.32.1
         | 
| 8 | 
            -
            app_file: app.py
         | 
| 9 | 
             
            pinned: false
         | 
| 10 | 
             
            short_description: Interface to interact with NVIDIA's Difix3D+ model
         | 
| 11 | 
             
            ---
         | 
|  | |
| 1 | 
             
            ---
         | 
| 2 | 
             
            title: Difix3D
         | 
|  | |
| 3 | 
             
            colorFrom: green
         | 
| 4 | 
             
            colorTo: indigo
         | 
| 5 | 
            +
            sdk: docker
         | 
|  | |
|  | |
| 6 | 
             
            pinned: false
         | 
| 7 | 
             
            short_description: Interface to interact with NVIDIA's Difix3D+ model
         | 
| 8 | 
             
            ---
         | 
    	
        app.py
    CHANGED
    
    | @@ -1,7 +1,320 @@ | |
| 1 | 
             
            import gradio as gr
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 2 |  | 
| 3 | 
            -
             | 
| 4 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 5 |  | 
| 6 | 
            -
             | 
| 7 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
             
            import gradio as gr
         | 
| 2 | 
            +
            import numpy as np
         | 
| 3 | 
            +
            from PIL import Image
         | 
| 4 | 
            +
            import torch
         | 
| 5 | 
            +
            import os
         | 
| 6 | 
            +
            from pipeline_difix import DifixPipeline
         | 
| 7 | 
            +
            from diffusers.utils import load_image
         | 
| 8 | 
            +
            import gradio.themes as gr_themes
         | 
| 9 | 
            +
            from pathlib import Path
         | 
| 10 | 
            +
            import logging
         | 
| 11 | 
            +
            import time
         | 
| 12 |  | 
| 13 | 
            +
            # Configure logging
         | 
| 14 | 
            +
            logging.basicConfig(
         | 
| 15 | 
            +
                level=logging.INFO,
         | 
| 16 | 
            +
                format='%(asctime)s - %(levelname)s - %(message)s',
         | 
| 17 | 
            +
                handlers=[
         | 
| 18 | 
            +
                    logging.StreamHandler(),  # Console output
         | 
| 19 | 
            +
                    logging.FileHandler('/tmp/difix3d_app.log', mode='a')  # File output
         | 
| 20 | 
            +
                ]
         | 
| 21 | 
            +
            )
         | 
| 22 | 
            +
            logger = logging.getLogger(__name__)
         | 
| 23 |  | 
| 24 | 
            +
            # Configuration
         | 
| 25 | 
            +
            MODEL_NAME = "nvidia/difix"
         | 
| 26 | 
            +
            DEFAULT_PROMPT = "remove degradation"
         | 
| 27 | 
            +
            DEFAULT_HEIGHT = 576
         | 
| 28 | 
            +
            DEFAULT_WIDTH = 1024
         | 
| 29 | 
            +
            DEFAULT_TIMESTEP = 199
         | 
| 30 | 
            +
            DEFAULT_GUIDANCE_SCALE = 0.0
         | 
| 31 | 
            +
            DEFAULT_NUM_INFERENCE_STEPS = 1
         | 
| 32 | 
            +
             | 
| 33 | 
            +
            # Global pipeline variable
         | 
| 34 | 
            +
            pipe = None
         | 
| 35 | 
            +
             | 
| 36 | 
            +
            logger.info("=== Difix Demo Starting ===")
         | 
| 37 | 
            +
            logger.info(f"MODEL_NAME: {MODEL_NAME}")
         | 
| 38 | 
            +
            logger.info(f"Current working directory: {os.getcwd()}")
         | 
| 39 | 
            +
            logger.info(f"CUDA Available: {torch.cuda.is_available()}")
         | 
| 40 | 
            +
            if torch.cuda.is_available():
         | 
| 41 | 
            +
                logger.info(f"CUDA Device: {torch.cuda.get_device_name()}")
         | 
| 42 | 
            +
                logger.info(f"CUDA Memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f} GB")
         | 
| 43 | 
            +
             | 
| 44 | 
            +
            # Login to Hugging Face using environment variable
         | 
| 45 | 
            +
            try:
         | 
| 46 | 
            +
                from huggingface_hub import login
         | 
| 47 | 
            +
                hf_token = os.getenv('HF_TOKEN')
         | 
| 48 | 
            +
                
         | 
| 49 | 
            +
                # If not in environment, try reading from /etc/hf_env
         | 
| 50 | 
            +
                if not hf_token and os.path.exists('/etc/hf_env'):
         | 
| 51 | 
            +
                    with open('/etc/hf_env', 'r') as f:
         | 
| 52 | 
            +
                        for line in f:
         | 
| 53 | 
            +
                            if line.strip().startswith('export HF_TOKEN='):
         | 
| 54 | 
            +
                                hf_token = line.strip().split('=', 1)[1]
         | 
| 55 | 
            +
                                break
         | 
| 56 | 
            +
                            elif line.strip().startswith('HF_TOKEN='):
         | 
| 57 | 
            +
                                hf_token = line.strip().split('=', 1)[1]
         | 
| 58 | 
            +
                                break
         | 
| 59 | 
            +
                
         | 
| 60 | 
            +
                if hf_token:
         | 
| 61 | 
            +
                    login(hf_token)
         | 
| 62 | 
            +
                    logger.info("Successfully authenticated with Hugging Face")
         | 
| 63 | 
            +
                else:
         | 
| 64 | 
            +
                    logger.warning("HF_TOKEN not found in environment or /etc/hf_env")
         | 
| 65 | 
            +
            except Exception as e:
         | 
| 66 | 
            +
                logger.error(f"Failed to authenticate with Hugging Face: {str(e)}")
         | 
| 67 | 
            +
             | 
| 68 | 
            +
            def initialize_pipeline():
         | 
| 69 | 
            +
                """Initialize the Difix pipeline and perform warmup"""
         | 
| 70 | 
            +
                global pipe
         | 
| 71 | 
            +
                
         | 
| 72 | 
            +
                logger.info("Starting pipeline initialization...")
         | 
| 73 | 
            +
                start_time = time.time()
         | 
| 74 | 
            +
                
         | 
| 75 | 
            +
                try:
         | 
| 76 | 
            +
                    logger.info(f"Loading DifixPipeline from {MODEL_NAME}...")
         | 
| 77 | 
            +
                    # Initialize pipeline using the new approach
         | 
| 78 | 
            +
                    pipe = DifixPipeline.from_pretrained(MODEL_NAME, trust_remote_code=True)
         | 
| 79 | 
            +
                    logger.info("DifixPipeline loaded successfully")
         | 
| 80 | 
            +
                    
         | 
| 81 | 
            +
                    logger.info("Moving pipeline to CUDA...")
         | 
| 82 | 
            +
                    if torch.cuda.is_available():
         | 
| 83 | 
            +
                        pipe.to("cuda")
         | 
| 84 | 
            +
                        logger.info("Pipeline moved to CUDA")
         | 
| 85 | 
            +
                    else:
         | 
| 86 | 
            +
                        logger.warning("CUDA not available, using CPU")
         | 
| 87 | 
            +
                    
         | 
| 88 | 
            +
                    init_time = time.time() - start_time
         | 
| 89 | 
            +
                    logger.info(f"Pipeline initialization completed in {init_time:.2f} seconds")
         | 
| 90 | 
            +
                    
         | 
| 91 | 
            +
                    # Warmup with dummy data
         | 
| 92 | 
            +
                    logger.info("Starting pipeline warmup...")
         | 
| 93 | 
            +
                    warmup_start = time.time()
         | 
| 94 | 
            +
                    try:
         | 
| 95 | 
            +
                        # Create dummy image with the model's expected resolution
         | 
| 96 | 
            +
                        dummy_image = Image.new('RGB', (DEFAULT_WIDTH, DEFAULT_HEIGHT), color='red')
         | 
| 97 | 
            +
                        logger.info(f"Created dummy image: {dummy_image.size}")
         | 
| 98 | 
            +
                        
         | 
| 99 | 
            +
                        _ = pipe(
         | 
| 100 | 
            +
                            DEFAULT_PROMPT,
         | 
| 101 | 
            +
                            image=dummy_image,
         | 
| 102 | 
            +
                            num_inference_steps=DEFAULT_NUM_INFERENCE_STEPS,
         | 
| 103 | 
            +
                            timesteps=[DEFAULT_TIMESTEP],
         | 
| 104 | 
            +
                            guidance_scale=DEFAULT_GUIDANCE_SCALE
         | 
| 105 | 
            +
                        ).images[0]
         | 
| 106 | 
            +
                        
         | 
| 107 | 
            +
                        warmup_time = time.time() - warmup_start
         | 
| 108 | 
            +
                        logger.info(f"Pipeline warmup completed successfully in {warmup_time:.2f} seconds")
         | 
| 109 | 
            +
                    except Exception as e:
         | 
| 110 | 
            +
                        logger.warning(f"Pipeline warmup failed: {e}")
         | 
| 111 | 
            +
                        
         | 
| 112 | 
            +
                except Exception as e:
         | 
| 113 | 
            +
                    logger.error(f"Pipeline initialization failed: {e}")
         | 
| 114 | 
            +
                    raise
         | 
| 115 | 
            +
             | 
| 116 | 
            +
            def process_image(image):
         | 
| 117 | 
            +
                """
         | 
| 118 | 
            +
                Process the input image using the Difix pipeline to remove artifacts.
         | 
| 119 | 
            +
                """
         | 
| 120 | 
            +
                global pipe
         | 
| 121 | 
            +
                
         | 
| 122 | 
            +
                if image is None:
         | 
| 123 | 
            +
                    return None, "Error: No image provided"
         | 
| 124 | 
            +
                
         | 
| 125 | 
            +
                if pipe is None:
         | 
| 126 | 
            +
                    error_msg = "Pipeline not initialized"
         | 
| 127 | 
            +
                    return None, f"Error: {error_msg}"
         | 
| 128 | 
            +
                
         | 
| 129 | 
            +
                try:
         | 
| 130 | 
            +
                    # Convert numpy array to PIL Image if needed
         | 
| 131 | 
            +
                    if isinstance(image, np.ndarray):
         | 
| 132 | 
            +
                        image = Image.fromarray(image)
         | 
| 133 | 
            +
                    
         | 
| 134 | 
            +
                    # Ensure image is in RGB mode
         | 
| 135 | 
            +
                    if image.mode != 'RGB':
         | 
| 136 | 
            +
                        image = image.convert('RGB')
         | 
| 137 | 
            +
                    
         | 
| 138 | 
            +
                    # Process the image using Difix pipeline
         | 
| 139 | 
            +
                    output_image = pipe(
         | 
| 140 | 
            +
                        DEFAULT_PROMPT,
         | 
| 141 | 
            +
                        image=image,
         | 
| 142 | 
            +
                        num_inference_steps=DEFAULT_NUM_INFERENCE_STEPS,
         | 
| 143 | 
            +
                        timesteps=[DEFAULT_TIMESTEP],
         | 
| 144 | 
            +
                        guidance_scale=DEFAULT_GUIDANCE_SCALE
         | 
| 145 | 
            +
                    ).images[0]
         | 
| 146 | 
            +
                    
         | 
| 147 | 
            +
                    return output_image, None
         | 
| 148 | 
            +
                    
         | 
| 149 | 
            +
                except Exception as e:
         | 
| 150 | 
            +
                    error_msg = f"Error processing image: {str(e)}"
         | 
| 151 | 
            +
                    logger.error(error_msg)
         | 
| 152 | 
            +
                    return None, error_msg
         | 
| 153 | 
            +
             | 
| 154 | 
            +
            def gradio_interface(image):
         | 
| 155 | 
            +
                """Wrapper function for Gradio interface"""
         | 
| 156 | 
            +
                result, error = process_image(image)
         | 
| 157 | 
            +
                if error:
         | 
| 158 | 
            +
                    gr.Warning(error)
         | 
| 159 | 
            +
                    return None
         | 
| 160 | 
            +
                return result
         | 
| 161 | 
            +
             | 
| 162 | 
            +
            # Initialize pipeline at startup
         | 
| 163 | 
            +
            logger.info("=== Starting Pipeline Initialization ===")
         | 
| 164 | 
            +
            try:
         | 
| 165 | 
            +
                initialize_pipeline()
         | 
| 166 | 
            +
                model_status = "✅ Pipeline loaded successfully"
         | 
| 167 | 
            +
                logger.info("Pipeline initialization successful")
         | 
| 168 | 
            +
            except Exception as e:
         | 
| 169 | 
            +
                model_status = f"❌ Pipeline initialization failed: {e}"
         | 
| 170 | 
            +
                logger.error(f"Pipeline initialization error: {e}")
         | 
| 171 | 
            +
             | 
| 172 | 
            +
            logger.info("=== Creating UI Components ===")
         | 
| 173 | 
            +
             | 
| 174 | 
            +
            # Article content for Difix
         | 
| 175 | 
            +
            article = (
         | 
| 176 | 
            +
                "<p style='font-size: 1.1em;'>"
         | 
| 177 | 
            +
                "This demo showcases <strong>Difix</strong>, a single-step image diffusion model trained to enhance and remove artifacts in rendered novel views caused by underconstrained regions of 3D representation."
         | 
| 178 | 
            +
                "</p>"
         | 
| 179 | 
            +
                "<p><strong style='color: #76B900; font-size: 1.2em;'>Key Features:</strong></p>"
         | 
| 180 | 
            +
                "<ul style='font-size: 1.1em;'>"
         | 
| 181 | 
            +
                "    <li>Single-step diffusion-based artifact removal for 3D novel views</li>"
         | 
| 182 | 
            +
                "    <li>Enhancement of underconstrained 3D regions (1024x576 default)</li>"
         | 
| 183 | 
            +
                "</ul>"
         | 
| 184 | 
            +
                "<p style='font-size: 1.1em;'>"
         | 
| 185 | 
            +
                f"<strong>Model Status:</strong> {model_status}"
         | 
| 186 | 
            +
                "</p>"
         | 
| 187 | 
            +
                "<p style='font-size: 1.0em; color: #666;'>"
         | 
| 188 | 
            +
                "Upload an image to see the restoration capabilities of Difix+. The model will automatically process your image and return an enhanced version."
         | 
| 189 | 
            +
                "</p>"
         | 
| 190 | 
            +
                
         | 
| 191 | 
            +
                "<p style='text-align: center;'>"
         | 
| 192 | 
            +
                "<a href='https://github.com/nv-tlabs/Difix3D' target='_blank'>🧑💻 GitHub Repository</a> | "
         | 
| 193 | 
            +
                "<a href='https://arxiv.org/abs/2503.01774' target='_blank'>📄 Research Paper</a> | "
         | 
| 194 | 
            +
                "<a href='https://huggingface.co/nvidia/difix' target='_blank'>🤗 Hugging Face Model</a>"
         | 
| 195 | 
            +
                "</p>"
         | 
| 196 | 
            +
            )
         | 
| 197 | 
            +
             | 
| 198 | 
            +
            logger.info("Creating theme...")
         | 
| 199 | 
            +
            # Define a modern green-inspired theme similar to NVIDIA
         | 
| 200 | 
            +
            difix_theme = gr_themes.Default(
         | 
| 201 | 
            +
                primary_hue=gr_themes.Color(
         | 
| 202 | 
            +
                    c50="#E6F7E6",   # Lightest green
         | 
| 203 | 
            +
                    c100="#CCF2CC",
         | 
| 204 | 
            +
                    c200="#99E699",
         | 
| 205 | 
            +
                    c300="#66D966",
         | 
| 206 | 
            +
                    c400="#33CC33",
         | 
| 207 | 
            +
                    c500="#00B300",  # Primary green
         | 
| 208 | 
            +
                    c600="#009900",
         | 
| 209 | 
            +
                    c700="#007A00",
         | 
| 210 | 
            +
                    c800="#005C00",
         | 
| 211 | 
            +
                    c900="#003D00",  # Darkest green
         | 
| 212 | 
            +
                    c950="#002600"
         | 
| 213 | 
            +
                ),
         | 
| 214 | 
            +
                secondary_hue=gr_themes.Color(
         | 
| 215 | 
            +
                    c50="#F0F8FF",   # Light blue accent
         | 
| 216 | 
            +
                    c100="#E0F0FF",
         | 
| 217 | 
            +
                    c200="#C0E0FF",
         | 
| 218 | 
            +
                    c300="#A0D0FF",
         | 
| 219 | 
            +
                    c400="#80C0FF",
         | 
| 220 | 
            +
                    c500="#4A90E2",  # Secondary blue
         | 
| 221 | 
            +
                    c600="#3A80D2",
         | 
| 222 | 
            +
                    c700="#2A70C2",
         | 
| 223 | 
            +
                    c800="#1A60B2",
         | 
| 224 | 
            +
                    c900="#0A50A2",
         | 
| 225 | 
            +
                    c950="#004092"
         | 
| 226 | 
            +
                ),
         | 
| 227 | 
            +
                neutral_hue="slate",
         | 
| 228 | 
            +
                font=[gr_themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans-serif"],
         | 
| 229 | 
            +
            ).set(
         | 
| 230 | 
            +
                body_background_fill="*neutral_50",
         | 
| 231 | 
            +
                block_background_fill="white",
         | 
| 232 | 
            +
                block_border_width="1px",
         | 
| 233 | 
            +
                block_border_color="*neutral_200",
         | 
| 234 | 
            +
                block_radius="8px",
         | 
| 235 | 
            +
                block_shadow="0 2px 4px rgba(0,0,0,0.1)",
         | 
| 236 | 
            +
                button_primary_background_fill="*primary_500",
         | 
| 237 | 
            +
                button_primary_background_fill_hover="*primary_600",
         | 
| 238 | 
            +
                button_primary_text_color="white",
         | 
| 239 | 
            +
            )
         | 
| 240 | 
            +
             | 
| 241 | 
            +
            logger.info("Creating Gradio interface...")
         | 
| 242 | 
            +
            # Create Gradio interface with Blocks for better control
         | 
| 243 | 
            +
            with gr.Blocks(theme=difix_theme, title="Difix") as demo:
         | 
| 244 | 
            +
                gr.Markdown("<h1 style='text-align: center; margin: 0 auto; color: #00B300;'>🎨 Difix</h1>")
         | 
| 245 | 
            +
                gr.HTML(article)
         | 
| 246 | 
            +
                
         | 
| 247 | 
            +
                gr.Markdown("---")
         | 
| 248 | 
            +
                
         | 
| 249 | 
            +
                with gr.Row():
         | 
| 250 | 
            +
                    with gr.Column(scale=1):
         | 
| 251 | 
            +
                        input_image = gr.Image(
         | 
| 252 | 
            +
                            type="pil", 
         | 
| 253 | 
            +
                            label="📤 Upload Image for Restoration",
         | 
| 254 | 
            +
                            height=400
         | 
| 255 | 
            +
                        )
         | 
| 256 | 
            +
                        
         | 
| 257 | 
            +
                        process_btn = gr.Button(
         | 
| 258 | 
            +
                            "🚀 Fix Image", 
         | 
| 259 | 
            +
                            variant="primary", 
         | 
| 260 | 
            +
                            size="lg"
         | 
| 261 | 
            +
                        )
         | 
| 262 | 
            +
                        
         | 
| 263 | 
            +
                        gr.Examples(
         | 
| 264 | 
            +
                            examples=["assets/example1.png","assets/example2.png"],
         | 
| 265 | 
            +
                            inputs=[input_image],
         | 
| 266 | 
            +
                            label="📋 Example Images"
         | 
| 267 | 
            +
                        )
         | 
| 268 | 
            +
                    
         | 
| 269 | 
            +
                    with gr.Column(scale=1):
         | 
| 270 | 
            +
                        output_image = gr.Image(
         | 
| 271 | 
            +
                            type="pil", 
         | 
| 272 | 
            +
                            label="✨ Fixed Image",
         | 
| 273 | 
            +
                            height=400
         | 
| 274 | 
            +
                        )
         | 
| 275 | 
            +
                
         | 
| 276 | 
            +
                gr.Markdown("---")
         | 
| 277 | 
            +
                gr.Markdown(
         | 
| 278 | 
            +
                    "<p style='text-align: center; color: #666; font-size: 0.9em;'>"
         | 
| 279 | 
            +
                    f"Model: {MODEL_NAME} | "
         | 
| 280 | 
            +
                    f"Resolution: {DEFAULT_WIDTH}×{DEFAULT_HEIGHT} | "
         | 
| 281 | 
            +
                    f"Prompt: '{DEFAULT_PROMPT}' | "
         | 
| 282 | 
            +
                    f"Steps: {DEFAULT_NUM_INFERENCE_STEPS} | "
         | 
| 283 | 
            +
                    f"Timestep: {DEFAULT_TIMESTEP} | "
         | 
| 284 | 
            +
                    f"Guidance Scale: {DEFAULT_GUIDANCE_SCALE}"
         | 
| 285 | 
            +
                    "</p>"
         | 
| 286 | 
            +
                )
         | 
| 287 | 
            +
                
         | 
| 288 | 
            +
                # Event handlers
         | 
| 289 | 
            +
                process_btn.click(
         | 
| 290 | 
            +
                    fn=gradio_interface,
         | 
| 291 | 
            +
                    inputs=[input_image],
         | 
| 292 | 
            +
                    outputs=[output_image],
         | 
| 293 | 
            +
                    api_name="restore_image"
         | 
| 294 | 
            +
                )
         | 
| 295 | 
            +
             | 
| 296 | 
            +
            logger.info("Configuring queue...")
         | 
| 297 | 
            +
            # Configure queueing for better performance
         | 
| 298 | 
            +
            demo.queue(
         | 
| 299 | 
            +
                default_concurrency_limit=2,  # Process up to 2 requests simultaneously
         | 
| 300 | 
            +
                max_size=20,  # Maximum 20 users can wait in queue
         | 
| 301 | 
            +
            )
         | 
| 302 | 
            +
             | 
| 303 | 
            +
            logger.info("=== Gradio Interface Created Successfully ===")
         | 
| 304 | 
            +
             | 
| 305 | 
            +
            if __name__ == "__main__":
         | 
| 306 | 
            +
                logger.info("=== Starting Gradio Launch ===")
         | 
| 307 | 
            +
                logger.info(f"Server config: 0.0.0.0:7860, max_threads=10")
         | 
| 308 | 
            +
                
         | 
| 309 | 
            +
                # Set up file access for assets directory
         | 
| 310 | 
            +
                assets_path = Path("assets").absolute()
         | 
| 311 | 
            +
                if assets_path.exists():
         | 
| 312 | 
            +
                    logger.info(f"Setting up file access for assets directory: {assets_path}")
         | 
| 313 | 
            +
                    
         | 
| 314 | 
            +
                demo.launch(
         | 
| 315 | 
            +
                    server_name="0.0.0.0",
         | 
| 316 | 
            +
                    server_port=7860,
         | 
| 317 | 
            +
                    max_threads=10,
         | 
| 318 | 
            +
                    # Allow access to assets directory
         | 
| 319 | 
            +
                    allowed_paths=[str(assets_path)] if assets_path.exists() else []
         | 
| 320 | 
            +
                )
         | 
    	
        assets/example1.png
    ADDED
    
    |   | 
| Git LFS Details
 | 
    	
        assets/example2.png
    ADDED
    
    |   | 
| Git LFS Details
 | 
    	
        pipeline_difix.py
    ADDED
    
    | @@ -0,0 +1,1120 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright 2023 The HuggingFace Team. All rights reserved.
         | 
| 2 | 
            +
            #
         | 
| 3 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 4 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 5 | 
            +
            # You may obtain a copy of the License at
         | 
| 6 | 
            +
            #
         | 
| 7 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 10 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 11 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 12 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 13 | 
            +
            # limitations under the License.
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            import inspect
         | 
| 16 | 
            +
            from typing import Any, Callable, Dict, List, Optional, Union
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            import PIL.Image
         | 
| 19 | 
            +
            import torch
         | 
| 20 | 
            +
            from packaging import version
         | 
| 21 | 
            +
            from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            from diffusers.configuration_utils import FrozenDict
         | 
| 24 | 
            +
            from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
         | 
| 25 | 
            +
            from diffusers.loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
         | 
| 26 | 
            +
            from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
         | 
| 27 | 
            +
            from diffusers.models.attention_processor import FusedAttnProcessor2_0
         | 
| 28 | 
            +
            from diffusers.models.lora import adjust_lora_scale_text_encoder
         | 
| 29 | 
            +
            from diffusers.schedulers import KarrasDiffusionSchedulers
         | 
| 30 | 
            +
            from diffusers.utils import (
         | 
| 31 | 
            +
                USE_PEFT_BACKEND,
         | 
| 32 | 
            +
                deprecate,
         | 
| 33 | 
            +
                logging,
         | 
| 34 | 
            +
                replace_example_docstring,
         | 
| 35 | 
            +
                scale_lora_layers,
         | 
| 36 | 
            +
                unscale_lora_layers,
         | 
| 37 | 
            +
            )
         | 
| 38 | 
            +
            from diffusers.utils.torch_utils import randn_tensor
         | 
| 39 | 
            +
            from diffusers.pipelines.pipeline_utils import DiffusionPipeline
         | 
| 40 | 
            +
            from diffusers.pipelines.stable_diffusion.pipeline_output import StableDiffusionPipelineOutput
         | 
| 41 | 
            +
            from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
         | 
| 42 | 
            +
             | 
| 43 | 
            +
             | 
| 44 | 
            +
            logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
         | 
| 45 | 
            +
             | 
| 46 | 
            +
            EXAMPLE_DOC_STRING = """
         | 
| 47 | 
            +
                Examples:
         | 
| 48 | 
            +
                    ```py
         | 
| 49 | 
            +
                    >>> import torch
         | 
| 50 | 
            +
                    >>> from diffusers import StableDiffusionPipeline
         | 
| 51 | 
            +
             | 
| 52 | 
            +
                    >>> pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
         | 
| 53 | 
            +
                    >>> pipe = pipe.to("cuda")
         | 
| 54 | 
            +
             | 
| 55 | 
            +
                    >>> prompt = "a photo of an astronaut riding a horse on mars"
         | 
| 56 | 
            +
                    >>> image = pipe(prompt).images[0]
         | 
| 57 | 
            +
                    ```
         | 
| 58 | 
            +
            """
         | 
| 59 | 
            +
             | 
| 60 | 
            +
             | 
| 61 | 
            +
            def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
         | 
| 62 | 
            +
                """
         | 
| 63 | 
            +
                Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
         | 
| 64 | 
            +
                Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
         | 
| 65 | 
            +
                """
         | 
| 66 | 
            +
                std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
         | 
| 67 | 
            +
                std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
         | 
| 68 | 
            +
                # rescale the results from guidance (fixes overexposure)
         | 
| 69 | 
            +
                noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
         | 
| 70 | 
            +
                # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
         | 
| 71 | 
            +
                noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
         | 
| 72 | 
            +
                return noise_cfg
         | 
| 73 | 
            +
             | 
| 74 | 
            +
             | 
| 75 | 
            +
            def retrieve_timesteps(
         | 
| 76 | 
            +
                scheduler,
         | 
| 77 | 
            +
                num_inference_steps: Optional[int] = None,
         | 
| 78 | 
            +
                device: Optional[Union[str, torch.device]] = None,
         | 
| 79 | 
            +
                timesteps: Optional[List[int]] = None,
         | 
| 80 | 
            +
                **kwargs,
         | 
| 81 | 
            +
            ):
         | 
| 82 | 
            +
                """
         | 
| 83 | 
            +
                Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
         | 
| 84 | 
            +
                custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
         | 
| 85 | 
            +
             | 
| 86 | 
            +
                Args:
         | 
| 87 | 
            +
                    scheduler (`SchedulerMixin`):
         | 
| 88 | 
            +
                        The scheduler to get timesteps from.
         | 
| 89 | 
            +
                    num_inference_steps (`int`):
         | 
| 90 | 
            +
                        The number of diffusion steps used when generating samples with a pre-trained model. If used,
         | 
| 91 | 
            +
                        `timesteps` must be `None`.
         | 
| 92 | 
            +
                    device (`str` or `torch.device`, *optional*):
         | 
| 93 | 
            +
                        The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
         | 
| 94 | 
            +
                    timesteps (`List[int]`, *optional*):
         | 
| 95 | 
            +
                            Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
         | 
| 96 | 
            +
                            timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
         | 
| 97 | 
            +
                            must be `None`.
         | 
| 98 | 
            +
             | 
| 99 | 
            +
                Returns:
         | 
| 100 | 
            +
                    `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
         | 
| 101 | 
            +
                    second element is the number of inference steps.
         | 
| 102 | 
            +
                """
         | 
| 103 | 
            +
                if timesteps is not None:
         | 
| 104 | 
            +
                    accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
         | 
| 105 | 
            +
                    if not accepts_timesteps:
         | 
| 106 | 
            +
                        raise ValueError(
         | 
| 107 | 
            +
                            f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
         | 
| 108 | 
            +
                            f" timestep schedules. Please check whether you are using the correct scheduler."
         | 
| 109 | 
            +
                        )
         | 
| 110 | 
            +
                    scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
         | 
| 111 | 
            +
                    timesteps = scheduler.timesteps
         | 
| 112 | 
            +
                    num_inference_steps = len(timesteps)
         | 
| 113 | 
            +
                else:
         | 
| 114 | 
            +
                    scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
         | 
| 115 | 
            +
                    timesteps = scheduler.timesteps
         | 
| 116 | 
            +
                return timesteps, num_inference_steps
         | 
| 117 | 
            +
             | 
| 118 | 
            +
             | 
| 119 | 
            +
            def retrieve_latents(
         | 
| 120 | 
            +
                encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
         | 
| 121 | 
            +
            ):
         | 
| 122 | 
            +
                if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
         | 
| 123 | 
            +
                    return encoder_output.latent_dist.sample(generator)
         | 
| 124 | 
            +
                elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
         | 
| 125 | 
            +
                    return encoder_output.latent_dist.mode()
         | 
| 126 | 
            +
                elif hasattr(encoder_output, "latents"):
         | 
| 127 | 
            +
                    return encoder_output.latents
         | 
| 128 | 
            +
                else:
         | 
| 129 | 
            +
                    raise AttributeError("Could not access latents of provided encoder_output")
         | 
| 130 | 
            +
             | 
| 131 | 
            +
             | 
| 132 | 
            +
            class DifixPipeline(
         | 
| 133 | 
            +
                DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin
         | 
| 134 | 
            +
            ):
         | 
| 135 | 
            +
                r"""
         | 
| 136 | 
            +
                Pipeline for text-to-image generation using Stable Diffusion.
         | 
| 137 | 
            +
             | 
| 138 | 
            +
                This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
         | 
| 139 | 
            +
                implemented for all pipelines (downloading, saving, running on a particular device, etc.).
         | 
| 140 | 
            +
             | 
| 141 | 
            +
                The pipeline also inherits the following loading methods:
         | 
| 142 | 
            +
                    - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
         | 
| 143 | 
            +
                    - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
         | 
| 144 | 
            +
                    - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
         | 
| 145 | 
            +
                    - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
         | 
| 146 | 
            +
                    - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
         | 
| 147 | 
            +
             | 
| 148 | 
            +
                Args:
         | 
| 149 | 
            +
                    vae ([`AutoencoderKL`]):
         | 
| 150 | 
            +
                        Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
         | 
| 151 | 
            +
                    text_encoder ([`~transformers.CLIPTextModel`]):
         | 
| 152 | 
            +
                        Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
         | 
| 153 | 
            +
                    tokenizer ([`~transformers.CLIPTokenizer`]):
         | 
| 154 | 
            +
                        A `CLIPTokenizer` to tokenize text.
         | 
| 155 | 
            +
                    unet ([`UNet2DConditionModel`]):
         | 
| 156 | 
            +
                        A `UNet2DConditionModel` to denoise the encoded image latents.
         | 
| 157 | 
            +
                    scheduler ([`SchedulerMixin`]):
         | 
| 158 | 
            +
                        A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
         | 
| 159 | 
            +
                        [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
         | 
| 160 | 
            +
                    safety_checker ([`StableDiffusionSafetyChecker`]):
         | 
| 161 | 
            +
                        Classification module that estimates whether generated images could be considered offensive or harmful.
         | 
| 162 | 
            +
                        Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
         | 
| 163 | 
            +
                        about a model's potential harms.
         | 
| 164 | 
            +
                    feature_extractor ([`~transformers.CLIPImageProcessor`]):
         | 
| 165 | 
            +
                        A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
         | 
| 166 | 
            +
                """
         | 
| 167 | 
            +
             | 
| 168 | 
            +
                model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
         | 
| 169 | 
            +
                _optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
         | 
| 170 | 
            +
                _exclude_from_cpu_offload = ["safety_checker"]
         | 
| 171 | 
            +
                _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
         | 
| 172 | 
            +
             | 
| 173 | 
            +
                def __init__(
         | 
| 174 | 
            +
                    self,
         | 
| 175 | 
            +
                    vae: AutoencoderKL,
         | 
| 176 | 
            +
                    text_encoder: CLIPTextModel,
         | 
| 177 | 
            +
                    tokenizer: CLIPTokenizer,
         | 
| 178 | 
            +
                    unet: UNet2DConditionModel,
         | 
| 179 | 
            +
                    scheduler: KarrasDiffusionSchedulers,
         | 
| 180 | 
            +
                    safety_checker: StableDiffusionSafetyChecker,
         | 
| 181 | 
            +
                    feature_extractor: CLIPImageProcessor,
         | 
| 182 | 
            +
                    image_encoder: CLIPVisionModelWithProjection = None,
         | 
| 183 | 
            +
                    requires_safety_checker: bool = True,
         | 
| 184 | 
            +
                ):
         | 
| 185 | 
            +
                    super().__init__()
         | 
| 186 | 
            +
             | 
| 187 | 
            +
                    if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
         | 
| 188 | 
            +
                        deprecation_message = (
         | 
| 189 | 
            +
                            f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
         | 
| 190 | 
            +
                            f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
         | 
| 191 | 
            +
                            "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
         | 
| 192 | 
            +
                            " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
         | 
| 193 | 
            +
                            " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
         | 
| 194 | 
            +
                            " file"
         | 
| 195 | 
            +
                        )
         | 
| 196 | 
            +
                        deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
         | 
| 197 | 
            +
                        new_config = dict(scheduler.config)
         | 
| 198 | 
            +
                        new_config["steps_offset"] = 1
         | 
| 199 | 
            +
                        scheduler._internal_dict = FrozenDict(new_config)
         | 
| 200 | 
            +
             | 
| 201 | 
            +
                    if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
         | 
| 202 | 
            +
                        deprecation_message = (
         | 
| 203 | 
            +
                            f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
         | 
| 204 | 
            +
                            " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
         | 
| 205 | 
            +
                            " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
         | 
| 206 | 
            +
                            " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
         | 
| 207 | 
            +
                            " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
         | 
| 208 | 
            +
                        )
         | 
| 209 | 
            +
                        deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
         | 
| 210 | 
            +
                        new_config = dict(scheduler.config)
         | 
| 211 | 
            +
                        new_config["clip_sample"] = False
         | 
| 212 | 
            +
                        scheduler._internal_dict = FrozenDict(new_config)
         | 
| 213 | 
            +
             | 
| 214 | 
            +
                    if safety_checker is None and requires_safety_checker:
         | 
| 215 | 
            +
                        logger.warning(
         | 
| 216 | 
            +
                            f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
         | 
| 217 | 
            +
                            " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
         | 
| 218 | 
            +
                            " results in services or applications open to the public. Both the diffusers team and Hugging Face"
         | 
| 219 | 
            +
                            " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
         | 
| 220 | 
            +
                            " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
         | 
| 221 | 
            +
                            " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
         | 
| 222 | 
            +
                        )
         | 
| 223 | 
            +
             | 
| 224 | 
            +
                    if safety_checker is not None and feature_extractor is None:
         | 
| 225 | 
            +
                        raise ValueError(
         | 
| 226 | 
            +
                            "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
         | 
| 227 | 
            +
                            " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
         | 
| 228 | 
            +
                        )
         | 
| 229 | 
            +
             | 
| 230 | 
            +
                    is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
         | 
| 231 | 
            +
                        version.parse(unet.config._diffusers_version).base_version
         | 
| 232 | 
            +
                    ) < version.parse("0.9.0.dev0")
         | 
| 233 | 
            +
                    is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
         | 
| 234 | 
            +
                    if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
         | 
| 235 | 
            +
                        deprecation_message = (
         | 
| 236 | 
            +
                            "The configuration file of the unet has set the default `sample_size` to smaller than"
         | 
| 237 | 
            +
                            " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
         | 
| 238 | 
            +
                            " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
         | 
| 239 | 
            +
                            " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
         | 
| 240 | 
            +
                            " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
         | 
| 241 | 
            +
                            " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
         | 
| 242 | 
            +
                            " in the config might lead to incorrect results in future versions. If you have downloaded this"
         | 
| 243 | 
            +
                            " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
         | 
| 244 | 
            +
                            " the `unet/config.json` file"
         | 
| 245 | 
            +
                        )
         | 
| 246 | 
            +
                        deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
         | 
| 247 | 
            +
                        new_config = dict(unet.config)
         | 
| 248 | 
            +
                        new_config["sample_size"] = 64
         | 
| 249 | 
            +
                        unet._internal_dict = FrozenDict(new_config)
         | 
| 250 | 
            +
             | 
| 251 | 
            +
                    self.register_modules(
         | 
| 252 | 
            +
                        vae=vae,
         | 
| 253 | 
            +
                        text_encoder=text_encoder,
         | 
| 254 | 
            +
                        tokenizer=tokenizer,
         | 
| 255 | 
            +
                        unet=unet,
         | 
| 256 | 
            +
                        scheduler=scheduler,
         | 
| 257 | 
            +
                        safety_checker=safety_checker,
         | 
| 258 | 
            +
                        feature_extractor=feature_extractor,
         | 
| 259 | 
            +
                        image_encoder=image_encoder,
         | 
| 260 | 
            +
                    )
         | 
| 261 | 
            +
                    self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
         | 
| 262 | 
            +
                    self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
         | 
| 263 | 
            +
                    self.register_to_config(requires_safety_checker=requires_safety_checker)
         | 
| 264 | 
            +
             | 
| 265 | 
            +
                def enable_vae_slicing(self):
         | 
| 266 | 
            +
                    r"""
         | 
| 267 | 
            +
                    Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
         | 
| 268 | 
            +
                    compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
         | 
| 269 | 
            +
                    """
         | 
| 270 | 
            +
                    self.vae.enable_slicing()
         | 
| 271 | 
            +
             | 
| 272 | 
            +
                def disable_vae_slicing(self):
         | 
| 273 | 
            +
                    r"""
         | 
| 274 | 
            +
                    Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
         | 
| 275 | 
            +
                    computing decoding in one step.
         | 
| 276 | 
            +
                    """
         | 
| 277 | 
            +
                    self.vae.disable_slicing()
         | 
| 278 | 
            +
             | 
| 279 | 
            +
                def enable_vae_tiling(self):
         | 
| 280 | 
            +
                    r"""
         | 
| 281 | 
            +
                    Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
         | 
| 282 | 
            +
                    compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
         | 
| 283 | 
            +
                    processing larger images.
         | 
| 284 | 
            +
                    """
         | 
| 285 | 
            +
                    self.vae.enable_tiling()
         | 
| 286 | 
            +
             | 
| 287 | 
            +
                def disable_vae_tiling(self):
         | 
| 288 | 
            +
                    r"""
         | 
| 289 | 
            +
                    Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
         | 
| 290 | 
            +
                    computing decoding in one step.
         | 
| 291 | 
            +
                    """
         | 
| 292 | 
            +
                    self.vae.disable_tiling()
         | 
| 293 | 
            +
             | 
| 294 | 
            +
                def _encode_prompt(
         | 
| 295 | 
            +
                    self,
         | 
| 296 | 
            +
                    prompt,
         | 
| 297 | 
            +
                    device,
         | 
| 298 | 
            +
                    num_images_per_prompt,
         | 
| 299 | 
            +
                    do_classifier_free_guidance,
         | 
| 300 | 
            +
                    negative_prompt=None,
         | 
| 301 | 
            +
                    prompt_embeds: Optional[torch.FloatTensor] = None,
         | 
| 302 | 
            +
                    negative_prompt_embeds: Optional[torch.FloatTensor] = None,
         | 
| 303 | 
            +
                    lora_scale: Optional[float] = None,
         | 
| 304 | 
            +
                    **kwargs,
         | 
| 305 | 
            +
                ):
         | 
| 306 | 
            +
                    deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
         | 
| 307 | 
            +
                    deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)
         | 
| 308 | 
            +
             | 
| 309 | 
            +
                    prompt_embeds_tuple = self.encode_prompt(
         | 
| 310 | 
            +
                        prompt=prompt,
         | 
| 311 | 
            +
                        device=device,
         | 
| 312 | 
            +
                        num_images_per_prompt=num_images_per_prompt,
         | 
| 313 | 
            +
                        do_classifier_free_guidance=do_classifier_free_guidance,
         | 
| 314 | 
            +
                        negative_prompt=negative_prompt,
         | 
| 315 | 
            +
                        prompt_embeds=prompt_embeds,
         | 
| 316 | 
            +
                        negative_prompt_embeds=negative_prompt_embeds,
         | 
| 317 | 
            +
                        lora_scale=lora_scale,
         | 
| 318 | 
            +
                        **kwargs,
         | 
| 319 | 
            +
                    )
         | 
| 320 | 
            +
             | 
| 321 | 
            +
                    # concatenate for backwards comp
         | 
| 322 | 
            +
                    prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])
         | 
| 323 | 
            +
             | 
| 324 | 
            +
                    return prompt_embeds
         | 
| 325 | 
            +
             | 
| 326 | 
            +
                def encode_prompt(
         | 
| 327 | 
            +
                    self,
         | 
| 328 | 
            +
                    prompt,
         | 
| 329 | 
            +
                    device,
         | 
| 330 | 
            +
                    num_images_per_prompt,
         | 
| 331 | 
            +
                    do_classifier_free_guidance,
         | 
| 332 | 
            +
                    negative_prompt=None,
         | 
| 333 | 
            +
                    prompt_embeds: Optional[torch.FloatTensor] = None,
         | 
| 334 | 
            +
                    negative_prompt_embeds: Optional[torch.FloatTensor] = None,
         | 
| 335 | 
            +
                    lora_scale: Optional[float] = None,
         | 
| 336 | 
            +
                    clip_skip: Optional[int] = None,
         | 
| 337 | 
            +
                ):
         | 
| 338 | 
            +
                    r"""
         | 
| 339 | 
            +
                    Encodes the prompt into text encoder hidden states.
         | 
| 340 | 
            +
             | 
| 341 | 
            +
                    Args:
         | 
| 342 | 
            +
                        prompt (`str` or `List[str]`, *optional*):
         | 
| 343 | 
            +
                            prompt to be encoded
         | 
| 344 | 
            +
                        device: (`torch.device`):
         | 
| 345 | 
            +
                            torch device
         | 
| 346 | 
            +
                        num_images_per_prompt (`int`):
         | 
| 347 | 
            +
                            number of images that should be generated per prompt
         | 
| 348 | 
            +
                        do_classifier_free_guidance (`bool`):
         | 
| 349 | 
            +
                            whether to use classifier free guidance or not
         | 
| 350 | 
            +
                        negative_prompt (`str` or `List[str]`, *optional*):
         | 
| 351 | 
            +
                            The prompt or prompts not to guide the image generation. If not defined, one has to pass
         | 
| 352 | 
            +
                            `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
         | 
| 353 | 
            +
                            less than `1`).
         | 
| 354 | 
            +
                        prompt_embeds (`torch.FloatTensor`, *optional*):
         | 
| 355 | 
            +
                            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
         | 
| 356 | 
            +
                            provided, text embeddings will be generated from `prompt` input argument.
         | 
| 357 | 
            +
                        negative_prompt_embeds (`torch.FloatTensor`, *optional*):
         | 
| 358 | 
            +
                            Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
         | 
| 359 | 
            +
                            weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
         | 
| 360 | 
            +
                            argument.
         | 
| 361 | 
            +
                        lora_scale (`float`, *optional*):
         | 
| 362 | 
            +
                            A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
         | 
| 363 | 
            +
                        clip_skip (`int`, *optional*):
         | 
| 364 | 
            +
                            Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
         | 
| 365 | 
            +
                            the output of the pre-final layer will be used for computing the prompt embeddings.
         | 
| 366 | 
            +
                    """
         | 
| 367 | 
            +
                    # set lora scale so that monkey patched LoRA
         | 
| 368 | 
            +
                    # function of text encoder can correctly access it
         | 
| 369 | 
            +
                    if lora_scale is not None and isinstance(self, LoraLoaderMixin):
         | 
| 370 | 
            +
                        self._lora_scale = lora_scale
         | 
| 371 | 
            +
             | 
| 372 | 
            +
                        # dynamically adjust the LoRA scale
         | 
| 373 | 
            +
                        if not USE_PEFT_BACKEND:
         | 
| 374 | 
            +
                            adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
         | 
| 375 | 
            +
                        else:
         | 
| 376 | 
            +
                            scale_lora_layers(self.text_encoder, lora_scale)
         | 
| 377 | 
            +
             | 
| 378 | 
            +
                    if prompt is not None and isinstance(prompt, str):
         | 
| 379 | 
            +
                        batch_size = 1
         | 
| 380 | 
            +
                    elif prompt is not None and isinstance(prompt, list):
         | 
| 381 | 
            +
                        batch_size = len(prompt)
         | 
| 382 | 
            +
                    else:
         | 
| 383 | 
            +
                        batch_size = prompt_embeds.shape[0]
         | 
| 384 | 
            +
             | 
| 385 | 
            +
                    if prompt_embeds is None:
         | 
| 386 | 
            +
                        # textual inversion: procecss multi-vector tokens if necessary
         | 
| 387 | 
            +
                        if isinstance(self, TextualInversionLoaderMixin):
         | 
| 388 | 
            +
                            prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
         | 
| 389 | 
            +
             | 
| 390 | 
            +
                        text_inputs = self.tokenizer(
         | 
| 391 | 
            +
                            prompt,
         | 
| 392 | 
            +
                            padding="max_length",
         | 
| 393 | 
            +
                            max_length=self.tokenizer.model_max_length,
         | 
| 394 | 
            +
                            truncation=True,
         | 
| 395 | 
            +
                            return_tensors="pt",
         | 
| 396 | 
            +
                        )
         | 
| 397 | 
            +
                        text_input_ids = text_inputs.input_ids
         | 
| 398 | 
            +
                        untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
         | 
| 399 | 
            +
             | 
| 400 | 
            +
                        if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
         | 
| 401 | 
            +
                            text_input_ids, untruncated_ids
         | 
| 402 | 
            +
                        ):
         | 
| 403 | 
            +
                            removed_text = self.tokenizer.batch_decode(
         | 
| 404 | 
            +
                                untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
         | 
| 405 | 
            +
                            )
         | 
| 406 | 
            +
                            logger.warning(
         | 
| 407 | 
            +
                                "The following part of your input was truncated because CLIP can only handle sequences up to"
         | 
| 408 | 
            +
                                f" {self.tokenizer.model_max_length} tokens: {removed_text}"
         | 
| 409 | 
            +
                            )
         | 
| 410 | 
            +
             | 
| 411 | 
            +
                        if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
         | 
| 412 | 
            +
                            attention_mask = text_inputs.attention_mask.to(device)
         | 
| 413 | 
            +
                        else:
         | 
| 414 | 
            +
                            attention_mask = None
         | 
| 415 | 
            +
             | 
| 416 | 
            +
                        if clip_skip is None:
         | 
| 417 | 
            +
                            prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
         | 
| 418 | 
            +
                            prompt_embeds = prompt_embeds[0]
         | 
| 419 | 
            +
                        else:
         | 
| 420 | 
            +
                            prompt_embeds = self.text_encoder(
         | 
| 421 | 
            +
                                text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
         | 
| 422 | 
            +
                            )
         | 
| 423 | 
            +
                            # Access the `hidden_states` first, that contains a tuple of
         | 
| 424 | 
            +
                            # all the hidden states from the encoder layers. Then index into
         | 
| 425 | 
            +
                            # the tuple to access the hidden states from the desired layer.
         | 
| 426 | 
            +
                            prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
         | 
| 427 | 
            +
                            # We also need to apply the final LayerNorm here to not mess with the
         | 
| 428 | 
            +
                            # representations. The `last_hidden_states` that we typically use for
         | 
| 429 | 
            +
                            # obtaining the final prompt representations passes through the LayerNorm
         | 
| 430 | 
            +
                            # layer.
         | 
| 431 | 
            +
                            prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
         | 
| 432 | 
            +
             | 
| 433 | 
            +
                    if self.text_encoder is not None:
         | 
| 434 | 
            +
                        prompt_embeds_dtype = self.text_encoder.dtype
         | 
| 435 | 
            +
                    elif self.unet is not None:
         | 
| 436 | 
            +
                        prompt_embeds_dtype = self.unet.dtype
         | 
| 437 | 
            +
                    else:
         | 
| 438 | 
            +
                        prompt_embeds_dtype = prompt_embeds.dtype
         | 
| 439 | 
            +
             | 
| 440 | 
            +
                    prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
         | 
| 441 | 
            +
             | 
| 442 | 
            +
                    bs_embed, seq_len, _ = prompt_embeds.shape
         | 
| 443 | 
            +
                    # duplicate text embeddings for each generation per prompt, using mps friendly method
         | 
| 444 | 
            +
                    prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
         | 
| 445 | 
            +
                    prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
         | 
| 446 | 
            +
             | 
| 447 | 
            +
                    # get unconditional embeddings for classifier free guidance
         | 
| 448 | 
            +
                    if do_classifier_free_guidance and negative_prompt_embeds is None:
         | 
| 449 | 
            +
                        uncond_tokens: List[str]
         | 
| 450 | 
            +
                        if negative_prompt is None:
         | 
| 451 | 
            +
                            uncond_tokens = [""] * batch_size
         | 
| 452 | 
            +
                        elif prompt is not None and type(prompt) is not type(negative_prompt):
         | 
| 453 | 
            +
                            raise TypeError(
         | 
| 454 | 
            +
                                f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
         | 
| 455 | 
            +
                                f" {type(prompt)}."
         | 
| 456 | 
            +
                            )
         | 
| 457 | 
            +
                        elif isinstance(negative_prompt, str):
         | 
| 458 | 
            +
                            uncond_tokens = [negative_prompt]
         | 
| 459 | 
            +
                        elif batch_size != len(negative_prompt):
         | 
| 460 | 
            +
                            raise ValueError(
         | 
| 461 | 
            +
                                f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
         | 
| 462 | 
            +
                                f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
         | 
| 463 | 
            +
                                " the batch size of `prompt`."
         | 
| 464 | 
            +
                            )
         | 
| 465 | 
            +
                        else:
         | 
| 466 | 
            +
                            uncond_tokens = negative_prompt
         | 
| 467 | 
            +
             | 
| 468 | 
            +
                        # textual inversion: procecss multi-vector tokens if necessary
         | 
| 469 | 
            +
                        if isinstance(self, TextualInversionLoaderMixin):
         | 
| 470 | 
            +
                            uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
         | 
| 471 | 
            +
             | 
| 472 | 
            +
                        max_length = prompt_embeds.shape[1]
         | 
| 473 | 
            +
                        uncond_input = self.tokenizer(
         | 
| 474 | 
            +
                            uncond_tokens,
         | 
| 475 | 
            +
                            padding="max_length",
         | 
| 476 | 
            +
                            max_length=max_length,
         | 
| 477 | 
            +
                            truncation=True,
         | 
| 478 | 
            +
                            return_tensors="pt",
         | 
| 479 | 
            +
                        )
         | 
| 480 | 
            +
             | 
| 481 | 
            +
                        if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
         | 
| 482 | 
            +
                            attention_mask = uncond_input.attention_mask.to(device)
         | 
| 483 | 
            +
                        else:
         | 
| 484 | 
            +
                            attention_mask = None
         | 
| 485 | 
            +
             | 
| 486 | 
            +
                        negative_prompt_embeds = self.text_encoder(
         | 
| 487 | 
            +
                            uncond_input.input_ids.to(device),
         | 
| 488 | 
            +
                            attention_mask=attention_mask,
         | 
| 489 | 
            +
                        )
         | 
| 490 | 
            +
                        negative_prompt_embeds = negative_prompt_embeds[0]
         | 
| 491 | 
            +
             | 
| 492 | 
            +
                    if do_classifier_free_guidance:
         | 
| 493 | 
            +
                        # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
         | 
| 494 | 
            +
                        seq_len = negative_prompt_embeds.shape[1]
         | 
| 495 | 
            +
             | 
| 496 | 
            +
                        negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
         | 
| 497 | 
            +
             | 
| 498 | 
            +
                        negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
         | 
| 499 | 
            +
                        negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
         | 
| 500 | 
            +
             | 
| 501 | 
            +
                    if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
         | 
| 502 | 
            +
                        # Retrieve the original scale by scaling back the LoRA layers
         | 
| 503 | 
            +
                        unscale_lora_layers(self.text_encoder, lora_scale)
         | 
| 504 | 
            +
             | 
| 505 | 
            +
                    return prompt_embeds, negative_prompt_embeds
         | 
| 506 | 
            +
             | 
| 507 | 
            +
                def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
         | 
| 508 | 
            +
                    dtype = next(self.image_encoder.parameters()).dtype
         | 
| 509 | 
            +
             | 
| 510 | 
            +
                    if not isinstance(image, torch.Tensor):
         | 
| 511 | 
            +
                        image = self.feature_extractor(image, return_tensors="pt").pixel_values
         | 
| 512 | 
            +
             | 
| 513 | 
            +
                    image = image.to(device=device, dtype=dtype)
         | 
| 514 | 
            +
                    if output_hidden_states:
         | 
| 515 | 
            +
                        image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
         | 
| 516 | 
            +
                        image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
         | 
| 517 | 
            +
                        uncond_image_enc_hidden_states = self.image_encoder(
         | 
| 518 | 
            +
                            torch.zeros_like(image), output_hidden_states=True
         | 
| 519 | 
            +
                        ).hidden_states[-2]
         | 
| 520 | 
            +
                        uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
         | 
| 521 | 
            +
                            num_images_per_prompt, dim=0
         | 
| 522 | 
            +
                        )
         | 
| 523 | 
            +
                        return image_enc_hidden_states, uncond_image_enc_hidden_states
         | 
| 524 | 
            +
                    else:
         | 
| 525 | 
            +
                        image_embeds = self.image_encoder(image).image_embeds
         | 
| 526 | 
            +
                        image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
         | 
| 527 | 
            +
                        uncond_image_embeds = torch.zeros_like(image_embeds)
         | 
| 528 | 
            +
             | 
| 529 | 
            +
                        return image_embeds, uncond_image_embeds
         | 
| 530 | 
            +
             | 
| 531 | 
            +
                def run_safety_checker(self, image, device, dtype):
         | 
| 532 | 
            +
                    if self.safety_checker is None:
         | 
| 533 | 
            +
                        has_nsfw_concept = None
         | 
| 534 | 
            +
                    else:
         | 
| 535 | 
            +
                        if torch.is_tensor(image):
         | 
| 536 | 
            +
                            feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
         | 
| 537 | 
            +
                        else:
         | 
| 538 | 
            +
                            feature_extractor_input = self.image_processor.numpy_to_pil(image)
         | 
| 539 | 
            +
                        safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
         | 
| 540 | 
            +
                        image, has_nsfw_concept = self.safety_checker(
         | 
| 541 | 
            +
                            images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
         | 
| 542 | 
            +
                        )
         | 
| 543 | 
            +
                    return image, has_nsfw_concept
         | 
| 544 | 
            +
             | 
| 545 | 
            +
                def decode_latents(self, latents):
         | 
| 546 | 
            +
                    deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
         | 
| 547 | 
            +
                    deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)
         | 
| 548 | 
            +
             | 
| 549 | 
            +
                    latents = 1 / self.vae.config.scaling_factor * latents
         | 
| 550 | 
            +
                    image = self.vae.decode(latents, return_dict=False)[0]
         | 
| 551 | 
            +
                    image = (image / 2 + 0.5).clamp(0, 1)
         | 
| 552 | 
            +
                    # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
         | 
| 553 | 
            +
                    image = image.cpu().permute(0, 2, 3, 1).float().numpy()
         | 
| 554 | 
            +
                    return image
         | 
| 555 | 
            +
             | 
| 556 | 
            +
                def prepare_extra_step_kwargs(self, generator, eta):
         | 
| 557 | 
            +
                    # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
         | 
| 558 | 
            +
                    # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
         | 
| 559 | 
            +
                    # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
         | 
| 560 | 
            +
                    # and should be between [0, 1]
         | 
| 561 | 
            +
             | 
| 562 | 
            +
                    accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
         | 
| 563 | 
            +
                    extra_step_kwargs = {}
         | 
| 564 | 
            +
                    if accepts_eta:
         | 
| 565 | 
            +
                        extra_step_kwargs["eta"] = eta
         | 
| 566 | 
            +
             | 
| 567 | 
            +
                    # check if the scheduler accepts generator
         | 
| 568 | 
            +
                    accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
         | 
| 569 | 
            +
                    if accepts_generator:
         | 
| 570 | 
            +
                        extra_step_kwargs["generator"] = generator
         | 
| 571 | 
            +
                    return extra_step_kwargs
         | 
| 572 | 
            +
             | 
| 573 | 
            +
                def check_inputs(
         | 
| 574 | 
            +
                    self,
         | 
| 575 | 
            +
                    prompt,
         | 
| 576 | 
            +
                    height,
         | 
| 577 | 
            +
                    width,
         | 
| 578 | 
            +
                    callback_steps,
         | 
| 579 | 
            +
                    negative_prompt=None,
         | 
| 580 | 
            +
                    prompt_embeds=None,
         | 
| 581 | 
            +
                    negative_prompt_embeds=None,
         | 
| 582 | 
            +
                    callback_on_step_end_tensor_inputs=None,
         | 
| 583 | 
            +
                ):
         | 
| 584 | 
            +
                    if height % 8 != 0 or width % 8 != 0:
         | 
| 585 | 
            +
                        raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
         | 
| 586 | 
            +
             | 
| 587 | 
            +
                    if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
         | 
| 588 | 
            +
                        raise ValueError(
         | 
| 589 | 
            +
                            f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
         | 
| 590 | 
            +
                            f" {type(callback_steps)}."
         | 
| 591 | 
            +
                        )
         | 
| 592 | 
            +
                    if callback_on_step_end_tensor_inputs is not None and not all(
         | 
| 593 | 
            +
                        k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
         | 
| 594 | 
            +
                    ):
         | 
| 595 | 
            +
                        raise ValueError(
         | 
| 596 | 
            +
                            f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
         | 
| 597 | 
            +
                        )
         | 
| 598 | 
            +
             | 
| 599 | 
            +
                    if prompt is not None and prompt_embeds is not None:
         | 
| 600 | 
            +
                        raise ValueError(
         | 
| 601 | 
            +
                            f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
         | 
| 602 | 
            +
                            " only forward one of the two."
         | 
| 603 | 
            +
                        )
         | 
| 604 | 
            +
                    elif prompt is None and prompt_embeds is None:
         | 
| 605 | 
            +
                        raise ValueError(
         | 
| 606 | 
            +
                            "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
         | 
| 607 | 
            +
                        )
         | 
| 608 | 
            +
                    elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
         | 
| 609 | 
            +
                        raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
         | 
| 610 | 
            +
             | 
| 611 | 
            +
                    if negative_prompt is not None and negative_prompt_embeds is not None:
         | 
| 612 | 
            +
                        raise ValueError(
         | 
| 613 | 
            +
                            f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
         | 
| 614 | 
            +
                            f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
         | 
| 615 | 
            +
                        )
         | 
| 616 | 
            +
             | 
| 617 | 
            +
                    if prompt_embeds is not None and negative_prompt_embeds is not None:
         | 
| 618 | 
            +
                        if prompt_embeds.shape != negative_prompt_embeds.shape:
         | 
| 619 | 
            +
                            raise ValueError(
         | 
| 620 | 
            +
                                "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
         | 
| 621 | 
            +
                                f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
         | 
| 622 | 
            +
                                f" {negative_prompt_embeds.shape}."
         | 
| 623 | 
            +
                            )
         | 
| 624 | 
            +
             | 
| 625 | 
            +
                def prepare_latents(self, image, batch_size, num_images_per_prompt, dtype, device, generator=None):
         | 
| 626 | 
            +
                    if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
         | 
| 627 | 
            +
                        raise ValueError(
         | 
| 628 | 
            +
                            f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
         | 
| 629 | 
            +
                        )
         | 
| 630 | 
            +
             | 
| 631 | 
            +
                    image = image.to(device=device, dtype=dtype)
         | 
| 632 | 
            +
             | 
| 633 | 
            +
                    batch_size = batch_size * num_images_per_prompt
         | 
| 634 | 
            +
             | 
| 635 | 
            +
                    if image.shape[1] == 4:
         | 
| 636 | 
            +
                        init_latents = image
         | 
| 637 | 
            +
             | 
| 638 | 
            +
                    else:
         | 
| 639 | 
            +
                        if isinstance(generator, list) and len(generator) != batch_size:
         | 
| 640 | 
            +
                            raise ValueError(
         | 
| 641 | 
            +
                                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
         | 
| 642 | 
            +
                                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
         | 
| 643 | 
            +
                            )
         | 
| 644 | 
            +
             | 
| 645 | 
            +
                        elif isinstance(generator, list):
         | 
| 646 | 
            +
                            init_latents = [
         | 
| 647 | 
            +
                                retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
         | 
| 648 | 
            +
                                for i in range(batch_size)
         | 
| 649 | 
            +
                            ]
         | 
| 650 | 
            +
                            init_latents = torch.cat(init_latents, dim=0)
         | 
| 651 | 
            +
                        else:
         | 
| 652 | 
            +
                            init_latents = retrieve_latents(self.vae.encode(image), generator=generator)
         | 
| 653 | 
            +
             | 
| 654 | 
            +
                        init_latents = self.vae.config.scaling_factor * init_latents
         | 
| 655 | 
            +
             | 
| 656 | 
            +
                    if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
         | 
| 657 | 
            +
                        # expand init_latents for batch_size
         | 
| 658 | 
            +
                        deprecation_message = (
         | 
| 659 | 
            +
                            f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial"
         | 
| 660 | 
            +
                            " images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
         | 
| 661 | 
            +
                            " that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
         | 
| 662 | 
            +
                            " your script to pass as many initial images as text prompts to suppress this warning."
         | 
| 663 | 
            +
                        )
         | 
| 664 | 
            +
                        deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False)
         | 
| 665 | 
            +
                        additional_image_per_prompt = batch_size // init_latents.shape[0]
         | 
| 666 | 
            +
                        init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
         | 
| 667 | 
            +
                    elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
         | 
| 668 | 
            +
                        raise ValueError(
         | 
| 669 | 
            +
                            f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
         | 
| 670 | 
            +
                        )
         | 
| 671 | 
            +
                    else:
         | 
| 672 | 
            +
                        init_latents = torch.cat([init_latents], dim=0)
         | 
| 673 | 
            +
             | 
| 674 | 
            +
                    # shape = init_latents.shape
         | 
| 675 | 
            +
                    # noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
         | 
| 676 | 
            +
             | 
| 677 | 
            +
                    # get latents
         | 
| 678 | 
            +
                    # init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
         | 
| 679 | 
            +
                    latents = init_latents
         | 
| 680 | 
            +
             | 
| 681 | 
            +
                    return latents
         | 
| 682 | 
            +
             | 
| 683 | 
            +
                def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
         | 
| 684 | 
            +
                    r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.
         | 
| 685 | 
            +
             | 
| 686 | 
            +
                    The suffixes after the scaling factors represent the stages where they are being applied.
         | 
| 687 | 
            +
             | 
| 688 | 
            +
                    Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
         | 
| 689 | 
            +
                    that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
         | 
| 690 | 
            +
             | 
| 691 | 
            +
                    Args:
         | 
| 692 | 
            +
                        s1 (`float`):
         | 
| 693 | 
            +
                            Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
         | 
| 694 | 
            +
                            mitigate "oversmoothing effect" in the enhanced denoising process.
         | 
| 695 | 
            +
                        s2 (`float`):
         | 
| 696 | 
            +
                            Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
         | 
| 697 | 
            +
                            mitigate "oversmoothing effect" in the enhanced denoising process.
         | 
| 698 | 
            +
                        b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
         | 
| 699 | 
            +
                        b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
         | 
| 700 | 
            +
                    """
         | 
| 701 | 
            +
                    if not hasattr(self, "unet"):
         | 
| 702 | 
            +
                        raise ValueError("The pipeline must have `unet` for using FreeU.")
         | 
| 703 | 
            +
                    self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)
         | 
| 704 | 
            +
             | 
| 705 | 
            +
                def disable_freeu(self):
         | 
| 706 | 
            +
                    """Disables the FreeU mechanism if enabled."""
         | 
| 707 | 
            +
                    self.unet.disable_freeu()
         | 
| 708 | 
            +
             | 
| 709 | 
            +
                # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.fuse_qkv_projections
         | 
| 710 | 
            +
                def fuse_qkv_projections(self, unet: bool = True, vae: bool = True):
         | 
| 711 | 
            +
                    """
         | 
| 712 | 
            +
                    Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query,
         | 
| 713 | 
            +
                    key, value) are fused. For cross-attention modules, key and value projection matrices are fused.
         | 
| 714 | 
            +
             | 
| 715 | 
            +
                    <Tip warning={true}>
         | 
| 716 | 
            +
             | 
| 717 | 
            +
                    This API is 🧪 experimental.
         | 
| 718 | 
            +
             | 
| 719 | 
            +
                    </Tip>
         | 
| 720 | 
            +
             | 
| 721 | 
            +
                    Args:
         | 
| 722 | 
            +
                        unet (`bool`, defaults to `True`): To apply fusion on the UNet.
         | 
| 723 | 
            +
                        vae (`bool`, defaults to `True`): To apply fusion on the VAE.
         | 
| 724 | 
            +
                    """
         | 
| 725 | 
            +
                    self.fusing_unet = False
         | 
| 726 | 
            +
                    self.fusing_vae = False
         | 
| 727 | 
            +
             | 
| 728 | 
            +
                    if unet:
         | 
| 729 | 
            +
                        self.fusing_unet = True
         | 
| 730 | 
            +
                        self.unet.fuse_qkv_projections()
         | 
| 731 | 
            +
                        self.unet.set_attn_processor(FusedAttnProcessor2_0())
         | 
| 732 | 
            +
             | 
| 733 | 
            +
                    if vae:
         | 
| 734 | 
            +
                        if not isinstance(self.vae, AutoencoderKL):
         | 
| 735 | 
            +
                            raise ValueError("`fuse_qkv_projections()` is only supported for the VAE of type `AutoencoderKL`.")
         | 
| 736 | 
            +
             | 
| 737 | 
            +
                        self.fusing_vae = True
         | 
| 738 | 
            +
                        self.vae.fuse_qkv_projections()
         | 
| 739 | 
            +
                        self.vae.set_attn_processor(FusedAttnProcessor2_0())
         | 
| 740 | 
            +
             | 
| 741 | 
            +
                # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.unfuse_qkv_projections
         | 
| 742 | 
            +
                def unfuse_qkv_projections(self, unet: bool = True, vae: bool = True):
         | 
| 743 | 
            +
                    """Disable QKV projection fusion if enabled.
         | 
| 744 | 
            +
             | 
| 745 | 
            +
                    <Tip warning={true}>
         | 
| 746 | 
            +
             | 
| 747 | 
            +
                    This API is 🧪 experimental.
         | 
| 748 | 
            +
             | 
| 749 | 
            +
                    </Tip>
         | 
| 750 | 
            +
             | 
| 751 | 
            +
                    Args:
         | 
| 752 | 
            +
                        unet (`bool`, defaults to `True`): To apply fusion on the UNet.
         | 
| 753 | 
            +
                        vae (`bool`, defaults to `True`): To apply fusion on the VAE.
         | 
| 754 | 
            +
             | 
| 755 | 
            +
                    """
         | 
| 756 | 
            +
                    if unet:
         | 
| 757 | 
            +
                        if not self.fusing_unet:
         | 
| 758 | 
            +
                            logger.warning("The UNet was not initially fused for QKV projections. Doing nothing.")
         | 
| 759 | 
            +
                        else:
         | 
| 760 | 
            +
                            self.unet.unfuse_qkv_projections()
         | 
| 761 | 
            +
                            self.fusing_unet = False
         | 
| 762 | 
            +
             | 
| 763 | 
            +
                    if vae:
         | 
| 764 | 
            +
                        if not self.fusing_vae:
         | 
| 765 | 
            +
                            logger.warning("The VAE was not initially fused for QKV projections. Doing nothing.")
         | 
| 766 | 
            +
                        else:
         | 
| 767 | 
            +
                            self.vae.unfuse_qkv_projections()
         | 
| 768 | 
            +
                            self.fusing_vae = False
         | 
| 769 | 
            +
             | 
| 770 | 
            +
                # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
         | 
| 771 | 
            +
                def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
         | 
| 772 | 
            +
                    """
         | 
| 773 | 
            +
                    See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
         | 
| 774 | 
            +
             | 
| 775 | 
            +
                    Args:
         | 
| 776 | 
            +
                        timesteps (`torch.Tensor`):
         | 
| 777 | 
            +
                            generate embedding vectors at these timesteps
         | 
| 778 | 
            +
                        embedding_dim (`int`, *optional*, defaults to 512):
         | 
| 779 | 
            +
                            dimension of the embeddings to generate
         | 
| 780 | 
            +
                        dtype:
         | 
| 781 | 
            +
                            data type of the generated embeddings
         | 
| 782 | 
            +
             | 
| 783 | 
            +
                    Returns:
         | 
| 784 | 
            +
                        `torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
         | 
| 785 | 
            +
                    """
         | 
| 786 | 
            +
                    assert len(w.shape) == 1
         | 
| 787 | 
            +
                    w = w * 1000.0
         | 
| 788 | 
            +
             | 
| 789 | 
            +
                    half_dim = embedding_dim // 2
         | 
| 790 | 
            +
                    emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
         | 
| 791 | 
            +
                    emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
         | 
| 792 | 
            +
                    emb = w.to(dtype)[:, None] * emb[None, :]
         | 
| 793 | 
            +
                    emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
         | 
| 794 | 
            +
                    if embedding_dim % 2 == 1:  # zero pad
         | 
| 795 | 
            +
                        emb = torch.nn.functional.pad(emb, (0, 1))
         | 
| 796 | 
            +
                    assert emb.shape == (w.shape[0], embedding_dim)
         | 
| 797 | 
            +
                    return emb
         | 
| 798 | 
            +
             | 
| 799 | 
            +
                @property
         | 
| 800 | 
            +
                def guidance_scale(self):
         | 
| 801 | 
            +
                    return self._guidance_scale
         | 
| 802 | 
            +
             | 
| 803 | 
            +
                @property
         | 
| 804 | 
            +
                def guidance_rescale(self):
         | 
| 805 | 
            +
                    return self._guidance_rescale
         | 
| 806 | 
            +
             | 
| 807 | 
            +
                @property
         | 
| 808 | 
            +
                def clip_skip(self):
         | 
| 809 | 
            +
                    return self._clip_skip
         | 
| 810 | 
            +
             | 
| 811 | 
            +
                # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
         | 
| 812 | 
            +
                # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
         | 
| 813 | 
            +
                # corresponds to doing no classifier free guidance.
         | 
| 814 | 
            +
                @property
         | 
| 815 | 
            +
                def do_classifier_free_guidance(self):
         | 
| 816 | 
            +
                    return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
         | 
| 817 | 
            +
             | 
| 818 | 
            +
                @property
         | 
| 819 | 
            +
                def cross_attention_kwargs(self):
         | 
| 820 | 
            +
                    return self._cross_attention_kwargs
         | 
| 821 | 
            +
             | 
| 822 | 
            +
                @property
         | 
| 823 | 
            +
                def num_timesteps(self):
         | 
| 824 | 
            +
                    return self._num_timesteps
         | 
| 825 | 
            +
             | 
| 826 | 
            +
                @property
         | 
| 827 | 
            +
                def interrupt(self):
         | 
| 828 | 
            +
                    return self._interrupt
         | 
| 829 | 
            +
             | 
| 830 | 
            +
                @torch.no_grad()
         | 
| 831 | 
            +
                @replace_example_docstring(EXAMPLE_DOC_STRING)
         | 
| 832 | 
            +
                def __call__(
         | 
| 833 | 
            +
                    self,
         | 
| 834 | 
            +
                    prompt: Union[str, List[str]] = None,
         | 
| 835 | 
            +
                    image: PipelineImageInput = None,
         | 
| 836 | 
            +
                    height: Optional[int] = None,
         | 
| 837 | 
            +
                    width: Optional[int] = None,
         | 
| 838 | 
            +
                    num_inference_steps: int = 50,
         | 
| 839 | 
            +
                    timesteps: List[int] = None,
         | 
| 840 | 
            +
                    guidance_scale: float = 7.5,
         | 
| 841 | 
            +
                    negative_prompt: Optional[Union[str, List[str]]] = None,
         | 
| 842 | 
            +
                    num_images_per_prompt: Optional[int] = 1,
         | 
| 843 | 
            +
                    eta: float = 0.0,
         | 
| 844 | 
            +
                    generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
         | 
| 845 | 
            +
                    latents: Optional[torch.FloatTensor] = None,
         | 
| 846 | 
            +
                    prompt_embeds: Optional[torch.FloatTensor] = None,
         | 
| 847 | 
            +
                    negative_prompt_embeds: Optional[torch.FloatTensor] = None,
         | 
| 848 | 
            +
                    ip_adapter_image: Optional[PipelineImageInput] = None,
         | 
| 849 | 
            +
                    output_type: Optional[str] = "pil",
         | 
| 850 | 
            +
                    return_dict: bool = True,
         | 
| 851 | 
            +
                    cross_attention_kwargs: Optional[Dict[str, Any]] = None,
         | 
| 852 | 
            +
                    guidance_rescale: float = 0.0,
         | 
| 853 | 
            +
                    clip_skip: Optional[int] = None,
         | 
| 854 | 
            +
                    callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
         | 
| 855 | 
            +
                    callback_on_step_end_tensor_inputs: List[str] = ["latents"],
         | 
| 856 | 
            +
                    **kwargs,
         | 
| 857 | 
            +
                ):
         | 
| 858 | 
            +
                    r"""
         | 
| 859 | 
            +
                    The call function to the pipeline for generation.
         | 
| 860 | 
            +
             | 
| 861 | 
            +
                    Args:
         | 
| 862 | 
            +
                        prompt (`str` or `List[str]`, *optional*):
         | 
| 863 | 
            +
                            The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
         | 
| 864 | 
            +
                        height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
         | 
| 865 | 
            +
                            The height in pixels of the generated image.
         | 
| 866 | 
            +
                        width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
         | 
| 867 | 
            +
                            The width in pixels of the generated image.
         | 
| 868 | 
            +
                        num_inference_steps (`int`, *optional*, defaults to 50):
         | 
| 869 | 
            +
                            The number of denoising steps. More denoising steps usually lead to a higher quality image at the
         | 
| 870 | 
            +
                            expense of slower inference.
         | 
| 871 | 
            +
                        timesteps (`List[int]`, *optional*):
         | 
| 872 | 
            +
                            Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
         | 
| 873 | 
            +
                            in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
         | 
| 874 | 
            +
                            passed will be used. Must be in descending order.
         | 
| 875 | 
            +
                        guidance_scale (`float`, *optional*, defaults to 7.5):
         | 
| 876 | 
            +
                            A higher guidance scale value encourages the model to generate images closely linked to the text
         | 
| 877 | 
            +
                            `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
         | 
| 878 | 
            +
                        negative_prompt (`str` or `List[str]`, *optional*):
         | 
| 879 | 
            +
                            The prompt or prompts to guide what to not include in image generation. If not defined, you need to
         | 
| 880 | 
            +
                            pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
         | 
| 881 | 
            +
                        num_images_per_prompt (`int`, *optional*, defaults to 1):
         | 
| 882 | 
            +
                            The number of images to generate per prompt.
         | 
| 883 | 
            +
                        eta (`float`, *optional*, defaults to 0.0):
         | 
| 884 | 
            +
                            Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
         | 
| 885 | 
            +
                            to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
         | 
| 886 | 
            +
                        generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
         | 
| 887 | 
            +
                            A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
         | 
| 888 | 
            +
                            generation deterministic.
         | 
| 889 | 
            +
                        latents (`torch.FloatTensor`, *optional*):
         | 
| 890 | 
            +
                            Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
         | 
| 891 | 
            +
                            generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
         | 
| 892 | 
            +
                            tensor is generated by sampling using the supplied random `generator`.
         | 
| 893 | 
            +
                        prompt_embeds (`torch.FloatTensor`, *optional*):
         | 
| 894 | 
            +
                            Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
         | 
| 895 | 
            +
                            provided, text embeddings are generated from the `prompt` input argument.
         | 
| 896 | 
            +
                        negative_prompt_embeds (`torch.FloatTensor`, *optional*):
         | 
| 897 | 
            +
                            Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
         | 
| 898 | 
            +
                            not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
         | 
| 899 | 
            +
                        ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
         | 
| 900 | 
            +
                        output_type (`str`, *optional*, defaults to `"pil"`):
         | 
| 901 | 
            +
                            The output format of the generated image. Choose between `PIL.Image` or `np.array`.
         | 
| 902 | 
            +
                        return_dict (`bool`, *optional*, defaults to `True`):
         | 
| 903 | 
            +
                            Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
         | 
| 904 | 
            +
                            plain tuple.
         | 
| 905 | 
            +
                        cross_attention_kwargs (`dict`, *optional*):
         | 
| 906 | 
            +
                            A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
         | 
| 907 | 
            +
                            [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
         | 
| 908 | 
            +
                        guidance_rescale (`float`, *optional*, defaults to 0.0):
         | 
| 909 | 
            +
                            Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
         | 
| 910 | 
            +
                            Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when
         | 
| 911 | 
            +
                            using zero terminal SNR.
         | 
| 912 | 
            +
                        clip_skip (`int`, *optional*):
         | 
| 913 | 
            +
                            Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
         | 
| 914 | 
            +
                            the output of the pre-final layer will be used for computing the prompt embeddings.
         | 
| 915 | 
            +
                        callback_on_step_end (`Callable`, *optional*):
         | 
| 916 | 
            +
                            A function that calls at the end of each denoising steps during the inference. The function is called
         | 
| 917 | 
            +
                            with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
         | 
| 918 | 
            +
                            callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
         | 
| 919 | 
            +
                            `callback_on_step_end_tensor_inputs`.
         | 
| 920 | 
            +
                        callback_on_step_end_tensor_inputs (`List`, *optional*):
         | 
| 921 | 
            +
                            The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
         | 
| 922 | 
            +
                            will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
         | 
| 923 | 
            +
                            `._callback_tensor_inputs` attribute of your pipeline class.
         | 
| 924 | 
            +
             | 
| 925 | 
            +
                    Examples:
         | 
| 926 | 
            +
             | 
| 927 | 
            +
                    Returns:
         | 
| 928 | 
            +
                        [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
         | 
| 929 | 
            +
                            If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
         | 
| 930 | 
            +
                            otherwise a `tuple` is returned where the first element is a list with the generated images and the
         | 
| 931 | 
            +
                            second element is a list of `bool`s indicating whether the corresponding generated image contains
         | 
| 932 | 
            +
                            "not-safe-for-work" (nsfw) content.
         | 
| 933 | 
            +
                    """
         | 
| 934 | 
            +
             | 
| 935 | 
            +
                    callback = kwargs.pop("callback", None)
         | 
| 936 | 
            +
                    callback_steps = kwargs.pop("callback_steps", None)
         | 
| 937 | 
            +
             | 
| 938 | 
            +
                    if callback is not None:
         | 
| 939 | 
            +
                        deprecate(
         | 
| 940 | 
            +
                            "callback",
         | 
| 941 | 
            +
                            "1.0.0",
         | 
| 942 | 
            +
                            "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
         | 
| 943 | 
            +
                        )
         | 
| 944 | 
            +
                    if callback_steps is not None:
         | 
| 945 | 
            +
                        deprecate(
         | 
| 946 | 
            +
                            "callback_steps",
         | 
| 947 | 
            +
                            "1.0.0",
         | 
| 948 | 
            +
                            "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
         | 
| 949 | 
            +
                        )
         | 
| 950 | 
            +
             | 
| 951 | 
            +
                    # 0. Default height and width to unet
         | 
| 952 | 
            +
                    height = height or self.unet.config.sample_size * self.vae_scale_factor
         | 
| 953 | 
            +
                    width = width or self.unet.config.sample_size * self.vae_scale_factor
         | 
| 954 | 
            +
                    # to deal with lora scaling and other possible forward hooks
         | 
| 955 | 
            +
             | 
| 956 | 
            +
                    # 1. Check inputs. Raise error if not correct
         | 
| 957 | 
            +
                    self.check_inputs(
         | 
| 958 | 
            +
                        prompt,
         | 
| 959 | 
            +
                        height,
         | 
| 960 | 
            +
                        width,
         | 
| 961 | 
            +
                        callback_steps,
         | 
| 962 | 
            +
                        negative_prompt,
         | 
| 963 | 
            +
                        prompt_embeds,
         | 
| 964 | 
            +
                        negative_prompt_embeds,
         | 
| 965 | 
            +
                        callback_on_step_end_tensor_inputs,
         | 
| 966 | 
            +
                    )
         | 
| 967 | 
            +
             | 
| 968 | 
            +
                    self._guidance_scale = guidance_scale
         | 
| 969 | 
            +
                    self._guidance_rescale = guidance_rescale
         | 
| 970 | 
            +
                    self._clip_skip = clip_skip
         | 
| 971 | 
            +
                    self._cross_attention_kwargs = cross_attention_kwargs
         | 
| 972 | 
            +
                    self._interrupt = False
         | 
| 973 | 
            +
             | 
| 974 | 
            +
                    # 2. Define call parameters
         | 
| 975 | 
            +
                    if prompt is not None and isinstance(prompt, str):
         | 
| 976 | 
            +
                        batch_size = 1
         | 
| 977 | 
            +
                    elif prompt is not None and isinstance(prompt, list):
         | 
| 978 | 
            +
                        batch_size = len(prompt)
         | 
| 979 | 
            +
                    else:
         | 
| 980 | 
            +
                        batch_size = prompt_embeds.shape[0]
         | 
| 981 | 
            +
             | 
| 982 | 
            +
                    device = self._execution_device
         | 
| 983 | 
            +
             | 
| 984 | 
            +
                    # 3. Encode input prompt
         | 
| 985 | 
            +
                    lora_scale = (
         | 
| 986 | 
            +
                        self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
         | 
| 987 | 
            +
                    )
         | 
| 988 | 
            +
             | 
| 989 | 
            +
                    prompt_embeds, negative_prompt_embeds = self.encode_prompt(
         | 
| 990 | 
            +
                        prompt,
         | 
| 991 | 
            +
                        device,
         | 
| 992 | 
            +
                        num_images_per_prompt,
         | 
| 993 | 
            +
                        self.do_classifier_free_guidance,
         | 
| 994 | 
            +
                        negative_prompt,
         | 
| 995 | 
            +
                        prompt_embeds=prompt_embeds,
         | 
| 996 | 
            +
                        negative_prompt_embeds=negative_prompt_embeds,
         | 
| 997 | 
            +
                        lora_scale=lora_scale,
         | 
| 998 | 
            +
                        clip_skip=self.clip_skip,
         | 
| 999 | 
            +
                    )
         | 
| 1000 | 
            +
             | 
| 1001 | 
            +
                    # For classifier free guidance, we need to do two forward passes.
         | 
| 1002 | 
            +
                    # Here we concatenate the unconditional and text embeddings into a single batch
         | 
| 1003 | 
            +
                    # to avoid doing two forward passes
         | 
| 1004 | 
            +
                    if self.do_classifier_free_guidance:
         | 
| 1005 | 
            +
                        prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
         | 
| 1006 | 
            +
             | 
| 1007 | 
            +
                    if ip_adapter_image is not None:
         | 
| 1008 | 
            +
                        output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True
         | 
| 1009 | 
            +
                        image_embeds, negative_image_embeds = self.encode_image(
         | 
| 1010 | 
            +
                            ip_adapter_image, device, num_images_per_prompt, output_hidden_state
         | 
| 1011 | 
            +
                        )
         | 
| 1012 | 
            +
                        if self.do_classifier_free_guidance:
         | 
| 1013 | 
            +
                            image_embeds = torch.cat([negative_image_embeds, image_embeds])
         | 
| 1014 | 
            +
             | 
| 1015 | 
            +
                    image = self.image_processor.preprocess(image)
         | 
| 1016 | 
            +
             | 
| 1017 | 
            +
                    # 4. Prepare timesteps
         | 
| 1018 | 
            +
                    timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
         | 
| 1019 | 
            +
             | 
| 1020 | 
            +
                    # 5. Prepare latent variables
         | 
| 1021 | 
            +
                    latents = self.prepare_latents(
         | 
| 1022 | 
            +
                        image,
         | 
| 1023 | 
            +
                        batch_size,
         | 
| 1024 | 
            +
                        num_images_per_prompt,
         | 
| 1025 | 
            +
                        prompt_embeds.dtype,
         | 
| 1026 | 
            +
                        device,
         | 
| 1027 | 
            +
                        generator,
         | 
| 1028 | 
            +
                    )
         | 
| 1029 | 
            +
             | 
| 1030 | 
            +
                    # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
         | 
| 1031 | 
            +
                    extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
         | 
| 1032 | 
            +
             | 
| 1033 | 
            +
                    # 6.1 Add image embeds for IP-Adapter
         | 
| 1034 | 
            +
                    added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None
         | 
| 1035 | 
            +
             | 
| 1036 | 
            +
                    # 6.2 Optionally get Guidance Scale Embedding
         | 
| 1037 | 
            +
                    timestep_cond = None
         | 
| 1038 | 
            +
                    if self.unet.config.time_cond_proj_dim is not None:
         | 
| 1039 | 
            +
                        guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
         | 
| 1040 | 
            +
                        timestep_cond = self.get_guidance_scale_embedding(
         | 
| 1041 | 
            +
                            guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
         | 
| 1042 | 
            +
                        ).to(device=device, dtype=latents.dtype)
         | 
| 1043 | 
            +
             | 
| 1044 | 
            +
                    # 7. Denoising loop
         | 
| 1045 | 
            +
                    num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
         | 
| 1046 | 
            +
                    self._num_timesteps = len(timesteps)
         | 
| 1047 | 
            +
                    with self.progress_bar(total=num_inference_steps) as progress_bar:
         | 
| 1048 | 
            +
                        for i, t in enumerate(timesteps):
         | 
| 1049 | 
            +
                            if self.interrupt:
         | 
| 1050 | 
            +
                                continue
         | 
| 1051 | 
            +
             | 
| 1052 | 
            +
                            # expand the latents if we are doing classifier free guidance
         | 
| 1053 | 
            +
                            latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
         | 
| 1054 | 
            +
                            latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
         | 
| 1055 | 
            +
             | 
| 1056 | 
            +
                            # predict the noise residual
         | 
| 1057 | 
            +
                            noise_pred = self.unet(
         | 
| 1058 | 
            +
                                latent_model_input,
         | 
| 1059 | 
            +
                                t,
         | 
| 1060 | 
            +
                                encoder_hidden_states=prompt_embeds,
         | 
| 1061 | 
            +
                                timestep_cond=timestep_cond,
         | 
| 1062 | 
            +
                                cross_attention_kwargs=self.cross_attention_kwargs,
         | 
| 1063 | 
            +
                                added_cond_kwargs=added_cond_kwargs,
         | 
| 1064 | 
            +
                                return_dict=False,
         | 
| 1065 | 
            +
                            )[0]
         | 
| 1066 | 
            +
             | 
| 1067 | 
            +
                            # perform guidance
         | 
| 1068 | 
            +
                            if self.do_classifier_free_guidance:
         | 
| 1069 | 
            +
                                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
         | 
| 1070 | 
            +
                                noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
         | 
| 1071 | 
            +
             | 
| 1072 | 
            +
                            if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
         | 
| 1073 | 
            +
                                # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
         | 
| 1074 | 
            +
                                noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
         | 
| 1075 | 
            +
             | 
| 1076 | 
            +
                            # compute the previous noisy sample x_t -> x_t-1
         | 
| 1077 | 
            +
                            latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
         | 
| 1078 | 
            +
             | 
| 1079 | 
            +
                            self.vae.decoder.incoming_skip_acts = self.vae.encoder.current_down_blocks
         | 
| 1080 | 
            +
             | 
| 1081 | 
            +
                            if callback_on_step_end is not None:
         | 
| 1082 | 
            +
                                callback_kwargs = {}
         | 
| 1083 | 
            +
                                for k in callback_on_step_end_tensor_inputs:
         | 
| 1084 | 
            +
                                    callback_kwargs[k] = locals()[k]
         | 
| 1085 | 
            +
                                callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
         | 
| 1086 | 
            +
             | 
| 1087 | 
            +
                                latents = callback_outputs.pop("latents", latents)
         | 
| 1088 | 
            +
                                prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
         | 
| 1089 | 
            +
                                negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
         | 
| 1090 | 
            +
             | 
| 1091 | 
            +
                            # call the callback, if provided
         | 
| 1092 | 
            +
                            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
         | 
| 1093 | 
            +
                                progress_bar.update()
         | 
| 1094 | 
            +
                                if callback is not None and i % callback_steps == 0:
         | 
| 1095 | 
            +
                                    step_idx = i // getattr(self.scheduler, "order", 1)
         | 
| 1096 | 
            +
                                    callback(step_idx, t, latents)
         | 
| 1097 | 
            +
             | 
| 1098 | 
            +
                    if not output_type == "latent":
         | 
| 1099 | 
            +
                        image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
         | 
| 1100 | 
            +
                            0
         | 
| 1101 | 
            +
                        ]
         | 
| 1102 | 
            +
                        image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
         | 
| 1103 | 
            +
                    else:
         | 
| 1104 | 
            +
                        image = latents
         | 
| 1105 | 
            +
                        has_nsfw_concept = None
         | 
| 1106 | 
            +
             | 
| 1107 | 
            +
                    if has_nsfw_concept is None:
         | 
| 1108 | 
            +
                        do_denormalize = [True] * image.shape[0]
         | 
| 1109 | 
            +
                    else:
         | 
| 1110 | 
            +
                        do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
         | 
| 1111 | 
            +
             | 
| 1112 | 
            +
                    image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
         | 
| 1113 | 
            +
             | 
| 1114 | 
            +
                    # Offload all models
         | 
| 1115 | 
            +
                    self.maybe_free_model_hooks()
         | 
| 1116 | 
            +
             | 
| 1117 | 
            +
                    if not return_dict:
         | 
| 1118 | 
            +
                        return (image, has_nsfw_concept)
         | 
| 1119 | 
            +
             | 
| 1120 | 
            +
                    return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
         | 
    	
        requirements.txt
    ADDED
    
    | @@ -0,0 +1,11 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            torch
         | 
| 2 | 
            +
            torchvision
         | 
| 3 | 
            +
            einops
         | 
| 4 | 
            +
            lpips
         | 
| 5 | 
            +
            peft==0.9.0
         | 
| 6 | 
            +
            diffusers==0.25.1
         | 
| 7 | 
            +
            huggingface-hub==0.25.1
         | 
| 8 | 
            +
            transformers==4.38.0
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            pydantic==2.10.6
         | 
| 11 | 
            +
            gradio==5.14.0
         | 
