Update app.py
Browse files
app.py
CHANGED
|
@@ -1,63 +1,49 @@
|
|
| 1 |
-
import
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
| 6 |
"""
|
| 7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
def respond(
|
| 11 |
-
message,
|
| 12 |
-
history: list[tuple[str, str]],
|
| 13 |
-
system_message,
|
| 14 |
-
max_tokens,
|
| 15 |
-
temperature,
|
| 16 |
-
top_p,
|
| 17 |
-
):
|
| 18 |
-
messages = [{"role": "system", "content": system_message}]
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
if val[1]:
|
| 24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
| 25 |
|
| 26 |
-
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
top_p=top_p,
|
| 36 |
-
):
|
| 37 |
-
token = message.choices[0].delta.content
|
| 38 |
|
| 39 |
-
|
| 40 |
-
yield response
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
|
|
|
| 45 |
demo = gr.ChatInterface(
|
| 46 |
-
|
|
|
|
|
|
|
| 47 |
additional_inputs=[
|
| 48 |
-
gr.Textbox(value="You are
|
| 49 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 50 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 51 |
-
gr.Slider(
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
),
|
| 58 |
-
],
|
| 59 |
-
)
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
if __name__ == "__main__":
|
| 63 |
-
demo.launch()
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 5 |
+
|
| 6 |
+
title = """# Minitron-8B-Base"""
|
| 7 |
+
description = """
|
| 8 |
+
Minitron is a family of small language models (SLMs) obtained by pruning [NVIDIA's](https://huggingface.co/nvidia) Nemotron-4 15B model. We prune model embedding size, attention heads, and MLP intermediate dimension, following which, we perform continued training with distillation to arrive at the final models.
|
| 9 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
# Load the tokenizer and model
|
| 12 |
+
model_path = "nvidia/Minitron-8B-Base"
|
| 13 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
device='cuda'
|
| 16 |
+
dtype=torch.bfloat16
|
| 17 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=dtype, device_map=device)
|
| 18 |
|
| 19 |
+
# Define the prompt format
|
| 20 |
+
def create_prompt(instruction):
|
| 21 |
+
PROMPT = '''Below is an instruction that describes a task.\n\nWrite a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:'''
|
| 22 |
+
return PROMPT.format(instruction=instruction)
|
| 23 |
|
| 24 |
+
@spaces.GPU
|
| 25 |
+
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
| 26 |
+
prompt = create_prompt(message)
|
| 27 |
+
|
| 28 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
+
output_ids = model.generate(input_ids, max_length=50, num_return_sequences=1)
|
|
|
|
| 31 |
|
| 32 |
+
output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 33 |
+
|
| 34 |
+
return output_text
|
| 35 |
+
|
| 36 |
demo = gr.ChatInterface(
|
| 37 |
+
title=gr.Markdown(title),
|
| 38 |
+
# description=gr.Markdown(description),
|
| 39 |
+
fn=respond,
|
| 40 |
additional_inputs=[
|
| 41 |
+
gr.Textbox(value="You are Minitron an AI assistant created by Tonic-AI", label="System message"),
|
| 42 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 43 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 44 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
|
| 45 |
+
],
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
if __name__ == "__main__":
|
| 49 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|