File size: 10,228 Bytes
53ea588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
#!/usr/bin/env python3
"""TTFB Log Analyzer.

Analyzes Time To First Byte (TTFB) logs, ASR compute latency, and LLM first sentence generation time
for multiple client streams and calculates average TTFB, ASR latency, first sentence time, and P95
for LLM, TTS, and ASR services.

Usage:
    python ttfb_analyzer.py [log_file_path]
    python ttfb_analyzer.py --help

Examples:
    python ttfb_analyzer.py
    python ttfb_analyzer.py /path/to/botlogs.log
    python ttfb_analyzer.py ../../examples/speech-to-speech/botlogs.log
"""

import argparse
import logging
import os
import re
import sys
from collections import defaultdict

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)


def calculate_p95(values: list[float]) -> float:
    """Calculate 95th percentile of values."""
    if not values:
        return 0.0
    sorted_values = sorted(values)
    index = int(0.95 * (len(sorted_values) - 1))
    return sorted_values[index]


def parse_logs(log_file_path: str) -> dict[str, dict[str, list[float]]]:
    """Parse LLM, TTS TTFBs, ASR compute latency, and LLM first sentence generation logs.

    Organize by client stream and service type. Only include events after the last client start.
    """
    data = defaultdict(lambda: {"LLM": [], "TTS": [], "ASR": [], "LLM_FIRST_SENTENCE": []})
    ttfb_pattern = r"streamId=([^\s]+)\s+-\s+(NvidiaLLMService|RivaTTSService)#\d+\s+TTFB:\s+([\d.]+)"
    asr_pattern = r"streamId=([^\s]+)\s+-\s+RivaASRService#\d+\s+ASR compute latency:\s+([\d.]+)"
    first_sentence_pattern = (
        r"streamId=([^\s]+)\s+-\s+NvidiaLLMService#\d+\s+LLM first sentence generation time:\s+([\d.]+)"
    )
    websocket_pattern = r".*Accepting WebSocket connection for stream ID client_\d+_\d+"

    # First pass: find the last client start log
    last_client_start_line = -1

    try:
        # Read all lines to find the last client start
        with open(log_file_path) as file:
            lines = file.readlines()

            # Find the last client start log by iterating through all lines
            for i, line in enumerate(lines):
                if re.search(websocket_pattern, line):
                    last_client_start_line = i

        # Validate that we found at least one client start
        if last_client_start_line == -1:
            logger.warning("No client start pattern found in logs")
            return dict()

        # Second pass: analyze only events after the last client start
        with open(log_file_path) as file:
            for i, line in enumerate(file):
                # Skip lines before the last client start
                if last_client_start_line != -1 and i <= last_client_start_line:
                    continue

                try:
                    # Check for TTFB metrics
                    ttfb_match = re.search(ttfb_pattern, line)
                    if ttfb_match:
                        client_id = ttfb_match.group(1).strip()
                        service_type = ttfb_match.group(2)
                        try:
                            ttfb_value = float(ttfb_match.group(3))
                        except (ValueError, TypeError) as e:
                            logger.warning(f"Invalid TTFB value in line {i + 1}: {ttfb_match.group(3)} - {e}")
                            continue

                        if service_type == "NvidiaLLMService":
                            data[client_id]["LLM"].append(ttfb_value)
                        elif service_type == "RivaTTSService":
                            data[client_id]["TTS"].append(ttfb_value)

                    # Check for ASR compute latency metrics
                    asr_match = re.search(asr_pattern, line)
                    if asr_match:
                        client_id = asr_match.group(1).strip()
                        try:
                            asr_latency = float(asr_match.group(2))
                        except (ValueError, TypeError) as e:
                            logger.warning(f"Invalid ASR latency value in line {i + 1}: {asr_match.group(2)} - {e}")
                            continue
                        data[client_id]["ASR"].append(asr_latency)

                    # Check for LLM first sentence generation time metrics
                    first_sentence_match = re.search(first_sentence_pattern, line)
                    if first_sentence_match:
                        client_id = first_sentence_match.group(1).strip()
                        try:
                            first_sentence_time = float(first_sentence_match.group(2))
                        except (ValueError, TypeError) as e:
                            logger.warning(
                                f"Invalid first sentence time value in line {i + 1}: "
                                f"{first_sentence_match.group(2)} - {e}"
                            )
                            continue
                        data[client_id]["LLM_FIRST_SENTENCE"].append(first_sentence_time)

                except Exception as e:
                    logger.warning(f"Error parsing line {i + 1}: {e}")
                    continue

    except FileNotFoundError:
        print(f"Error: Log file '{log_file_path}' not found.")
        sys.exit(1)
    except Exception as e:
        print(f"Error reading log file: {e}")
        sys.exit(1)

    return dict(data)


def calculate_client_averages(data: dict[str, dict[str, list[float]]]) -> dict[str, dict[str, float]]:
    """Calculate average metrics for each client and service type."""
    averages = {}
    for client_id, services in data.items():
        averages[client_id] = {}
        for service_type, values in services.items():
            if values:
                averages[client_id][service_type] = sum(values) / len(values)
            else:
                averages[client_id][service_type] = 0.0
    return averages


def print_results(data: dict[str, dict[str, list[float]]], client_averages: dict[str, dict[str, float]]):
    """Print analysis results."""
    print("=" * 90)
    print("LATENCY ANALYSIS RESULTS")
    print("=" * 90)

    # Show metric arrays for each client
    for client_id in sorted(data.keys()):
        llm_values = data[client_id]["LLM"]
        tts_values = data[client_id]["TTS"]
        asr_values = data[client_id]["ASR"]
        first_sentence_values = data[client_id]["LLM_FIRST_SENTENCE"]

        print(f"\n{client_id}:")
        print(f"  LLM TTFB: {[f'{v:.3f}' for v in llm_values]}")
        print(f"  TTS TTFB: {[f'{v:.3f}' for v in tts_values]}")
        print(f"  ASR Latency: {[f'{v:.3f}' for v in asr_values]}")
        print(f"  LLM First Sentence: {[f'{v:.3f}' for v in first_sentence_values]}")

    # Summary table with overall statistics
    print(
        f"\n{'Client ID':<25} {'LLM TTFB':<10} {'TTS TTFB':<10} {'ASR Lat':<10} "
        f"{'LLM 1st':<10} {'LLM calls':<10} {'TTS calls':<10} {'ASR calls':<10}"
    )
    print("-" * 120)

    for client_id in sorted(data.keys()):
        llm_avg = client_averages[client_id]["LLM"]
        tts_avg = client_averages[client_id]["TTS"]
        asr_avg = client_averages[client_id]["ASR"]
        first_sentence_avg = client_averages[client_id]["LLM_FIRST_SENTENCE"]
        llm_count = len(data[client_id]["LLM"])
        tts_count = len(data[client_id]["TTS"])
        asr_count = len(data[client_id]["ASR"])
        print(
            f"{client_id:<25} {llm_avg:<10.3f} {tts_avg:<10.3f} {asr_avg:<10.3f} {first_sentence_avg:<10.3f} "
            f"{llm_count:<10} {tts_count:<10} {asr_count:<10}"
        )

    # Calculate overall statistics across client averages
    llm_client_averages = [avg["LLM"] for avg in client_averages.values() if avg["LLM"] > 0]
    tts_client_averages = [avg["TTS"] for avg in client_averages.values() if avg["TTS"] > 0]
    asr_client_averages = [avg["ASR"] for avg in client_averages.values() if avg["ASR"] > 0]
    first_sentence_client_averages = [
        avg["LLM_FIRST_SENTENCE"] for avg in client_averages.values() if avg["LLM_FIRST_SENTENCE"] > 0
    ]

    # Add separator and overall statistics rows
    print("-" * 120)

    if llm_client_averages and tts_client_averages and asr_client_averages:
        llm_overall_avg = sum(llm_client_averages) / len(llm_client_averages)
        llm_p95 = calculate_p95(llm_client_averages)
        tts_overall_avg = sum(tts_client_averages) / len(tts_client_averages)
        tts_p95 = calculate_p95(tts_client_averages)
        asr_overall_avg = sum(asr_client_averages) / len(asr_client_averages)
        asr_p95 = calculate_p95(asr_client_averages)

        first_sentence_overall_avg = (
            sum(first_sentence_client_averages) / len(first_sentence_client_averages)
            if first_sentence_client_averages
            else 0.0
        )
        first_sentence_p95 = calculate_p95(first_sentence_client_averages) if first_sentence_client_averages else 0.0

        print(
            f"{'OVERALL AVERAGE':<25} {llm_overall_avg:<10.3f} {tts_overall_avg:<10.3f} "
            f"{asr_overall_avg:<10.3f} {first_sentence_overall_avg:<10.3f}"
        )
        print(f"{'OVERALL P95':<25} {llm_p95:<10.3f} {tts_p95:<10.3f} {asr_p95:<10.3f} {first_sentence_p95:<10.3f}")

    print("-" * 120)


def main():
    """Main function."""
    parser = argparse.ArgumentParser(
        description="Analyze LLM, TTS TTFBs, ASR latency, and LLM first sentence generation time logs "
        "for multiple client streams"
    )
    parser.add_argument(
        "log_file",
        nargs="?",
        default="../../examples/speech-to-speech/botlogs.log",
        help="Path to log file (default: ../../examples/speech-to-speech/botlogs.log)",
    )
    args = parser.parse_args()

    print("Latency Log Analyzer")
    print(f"Analyzing: {args.log_file}")

    if not os.path.exists(args.log_file):
        print(f"Error: Log file '{args.log_file}' not found.")
        sys.exit(1)

    data = parse_logs(args.log_file)
    if not data:
        print("No performance data found in log file.")
        return

    print()

    client_averages = calculate_client_averages(data)
    print_results(data, client_averages)


if __name__ == "__main__":
    main()