Spaces:
Running
Running
File size: 21,206 Bytes
53ea588 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 |
#!/bin/bash
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
# GPU family of target platform. Supported values: tegra, non-tegra
riva_target_gpu_family="non-tegra"
# Name of tegra platform that is being used. Supported tegra platforms: orin, xavier
riva_tegra_platform="orin"
####### Enable or Disable Riva Services #######
# For any language other than en-US: service_enabled_nlp must be set to false
service_enabled_asr=true
service_enabled_nlp=true
service_enabled_tts=true
service_enabled_nmt=false
####### Configure ASR service #######
# List of supported ASR models and languages for each ASR model
# Language code "multi" means a multilingual model, supported languages for various multilingual models are
# specified on https://docs.nvidia.com/deeplearning/riva/user-guide/docs/asr/asr-overview.html#multilingual-models
# "DO NOT EDIT" this field. Refer to this for valid values to be set in "asr_acoustic_model" and "asr_language_code" fields
declare -A asr_models_languages_map
asr_models_languages_map["conformer"]="ar-AR en-US en-GB de-DE es-ES es-US fr-FR hi-IN it-IT ja-JP ru-RU ko-KR pt-BR zh-CN nl-NL nl-BE"
asr_models_languages_map["conformer_xl"]="en-US"
asr_models_languages_map["conformer_unified"]="de-DE ja-JP zh-CN"
asr_models_languages_map["conformer_ml_cs"]="es-en-US"
asr_models_languages_map["conformer_unified_ml_cs"]="ja-en-JP"
asr_models_languages_map["parakeet_0.6b"]="en-US"
asr_models_languages_map["parakeet_0.6b_unified"]="en-US zh-CN"
asr_models_languages_map["parakeet_0.6b_unified_ml_cs"]="es-en-US"
asr_models_languages_map["parakeet_1.1b"]="en-US"
asr_models_languages_map["parakeet_1.1b_unified_ml_cs"]="em-ea"
asr_models_languages_map["parakeet_1.1b_unified_ml_cs_universal"]="multi"
asr_models_languages_map["parakeet_1.1b_unified_ml_cs_concat"]="multi"
asr_models_languages_map["parakeet-rnnt_1.1b"]="en-US"
asr_models_languages_map["parakeet-rnnt_1.1b_unified_ml_cs_universal"]="multi"
asr_models_languages_map["whisper_large"]="multi"
asr_models_languages_map["whisper_large_turbo"]="multi"
asr_models_languages_map["distil_whisper_large"]="en-US"
asr_models_languages_map["kotoba_whisper"]="ja-JP"
asr_models_languages_map["canary_1b"]="multi"
asr_models_languages_map["canary_0.6b_turbo"]="multi"
# Specify ASR acoustic model to deploy, as defined in "asr_models_languages_map" above
# Only one ASR acoustic model can be deployed at a time
#asr_acoustic_model=("conformer")
asr_acoustic_model=("parakeet_1.1b")
# Specify ASR language to deploy, as defined in "asr_models_languages_map" above
# For multiple languages, enter space separated language codes
asr_language_code=("en-US")
# Specify ASR accessory model from below list, prebuilt model available only when "asr_acoustic_model" is set to "parakeet_1.1b"
# "diarizer" : deploy ASR model with Speaker Diarization model
# "silero" : deploy ASR model with Silero Voice Activity Detector (VAD) model
# "tele" : deploy ASR model trained with channel robust (telephony) data
# Only one ASR accessory model can be deployed at a time
asr_accessory_model=("silero")
# Set this field as true to deploy ASR with greedy decoder, instead of flashlight decoder
use_asr_greedy_decoder=false
# Set this as true to deploy streaming ASR in high throughput mode, instead of low latency mode
use_asr_streaming_throughput_mode=false
# Set this field as true to deploy an offline speaker diarization model
deploy_offline_diarizer=false
####### Configure TTS service #######
# List of supported TTS models and languages for each TTS model
# Language code "multi" means a multilingual model, supported languages for the multilingual models are
# specified on https://docs.nvidia.com/deeplearning/riva/user-guide/docs/tts/tts-overview.html#pretrained-tts-models
# "DO NOT EDIT" this field. Refer to this for valid values to be set in "tts_model" and "tts_language_code" fields
declare -A tts_models_languages_map
tts_models_languages_map["fastpitch_hifigan"]="en-US es-ES es-US it-IT de-DE zh-CN"
tts_models_languages_map["magpie"]="multi"
tts_models_languages_map["radtts_hifigan"]="en-US"
tts_models_languages_map["radttspp_hifigan"]="en-US"
tts_models_languages_map["pflow_hifigan"]="en-US"
# Specify TTS model to deploy, as defined in "tts_models_languages_map" above
# Only one TTS model can be deployed at a time
tts_model=("fastpitch_hifigan")
# Specify TTS language to deploy, as defined in "tts_models_languages_map" above
# For multiple languages, enter space separated language codes
tts_language_code=("en-US")
####### Configure translation services #######
# Text-to-Text translation (T2T):
# - service_enabled_nmt must be set to true
# Speech-to-Text translation (S2T):
# - service_enabled_asr, service_enabled_nmt must be set to true
# - Set language code of input speech in the asr_language_code field
# Speech-to-Speech translation (S2S):
# - service_enabled_asr, service_enabled_nmt, service_enabled_tts must be set to true
# - Set language code of input speech in the asr_language_code field
# - Set language code of output speech in the tts_language_code field
# Remote deployment for ASR and TTS for S2T and S2S use cases
# - NMT deployment supports using remote ASR and TTS service to allow better control on deployments.
# - You need to deploy a separate Riva ASR service and Riva TTS service to use this functionality.
# - Set nmt_remote_asr_service to point to your remote endpoint for Riva ASR service
# - Set nmt_remote_tts_service to point to your remote endpoint for Riva TTS service
# - By default, ASR and TTS service is used from the same local deployment along with NMT.
nmt_remote_asr_service=0.0.0.0:50051
nmt_remote_tts_service=0.0.0.0:50051
# Enable Riva Enterprise
# If enrolled in Enterprise, enable Riva Enterprise by setting configuration
# here. You must explicitly acknowledge you have read and agree to the EULA.
# RIVA_API_KEY=<ngc api key>
# RIVA_API_NGC_ORG=<ngc organization>
# RIVA_EULA=accept
# Specify one or more GPUs to use
# specifying more than one GPU is currently an experimental feature, and may result in undefined behaviours.
gpus_to_use="device=0"
# Specify the encryption key to use to deploy models
MODEL_DEPLOY_KEY="tlt_encode"
# Locations to use for storing models artifacts
#
# If an absolute path is specified, the data will be written to that location
# Otherwise, a Docker volume will be used (default).
#
# riva_init.sh will create a `rmir` and `models` directory in the volume or
# path specified.
#
# RMIR ($riva_model_loc/rmir)
# Riva uses an intermediate representation (RMIR) for models
# that are ready to deploy but not yet fully optimized for deployment. Pretrained
# versions can be obtained from NGC (by specifying NGC models below) and will be
# downloaded to $riva_model_loc/rmir by `riva_init.sh`
#
# Custom models produced by NeMo or TLT and prepared using riva-build
# may also be copied manually to this location $(riva_model_loc/rmir).
#
# Models ($riva_model_loc/models)
# During the riva_init process, the RMIR files in $riva_model_loc/rmir
# are inspected and optimized for deployment. The optimized versions are
# stored in $riva_model_loc/models. The riva server exclusively uses these
# optimized versions.
riva_model_loc="riva-model-repo"
if [[ $riva_target_gpu_family == "tegra" ]]; then
riva_model_loc="`pwd`/model_repository"
fi
# The default RMIRs are downloaded from NGC by default in the above $riva_rmir_loc directory
# If you'd like to skip the download from NGC and use the existing RMIRs in the $riva_rmir_loc
# then set the below $use_existing_rmirs flag to true. You can also deploy your set of custom
# RMIRs by keeping them in the riva_rmir_loc dir and use this quickstart script with the
# below flag to deploy them all together.
use_existing_rmirs=false
# Ports to expose for Riva services
riva_speech_api_port="50051"
riva_speech_api_http_port="50000"
# NGC orgs
riva_ngc_org="nvidia"
riva_ngc_team="riva"
riva_ngc_image_version="2.19.0"
riva_ngc_model_version="2.19.0"
########## ASR MODELS ##########
models_asr=()
for lang_code in ${asr_language_code[@]}; do
# filter unsupported models on tegra platform
if [[ $riva_target_gpu_family == "tegra" ]]; then
if [[ ${asr_acoustic_model} == "conformer_xl" || \
${asr_acoustic_model} == *"parakeet-rnnt"* || \
${asr_acoustic_model} == *"canary"* || \
${asr_acoustic_model} == *"whisper"* ]]; then
echo "${asr_acoustic_model} model not available for ${riva_target_gpu_family} gpu family"
exit 1
fi
if [[ ${asr_accessory_model} != "" || ${use_asr_greedy_decoder} == "true" || ${use_asr_streaming_throughput_mode} == "true" ]]; then
echo "Prebuilt accessory model, greedy decoder and streaming-throughput mode with ASR are not available for ${riva_target_gpu_family} gpu family"
exit 1
fi
fi
# filter unsupported models and languages
supported_languages_list=(${asr_models_languages_map[${asr_acoustic_model}]})
if [[ ${#supported_languages_list[@]} == 0 ]]; then
echo "Acoustic model ${asr_acoustic_model} not found. Provide model name as defined in asr_models_languages_map"
exit 1
else
found=0
for lang in "${supported_languages_list[@]}"; do
if [[ ${lang} == ${lang_code} ]]; then
found=1
break
fi
done
if [[ $found == 0 ]]; then
echo "Acoustic model ${asr_acoustic_model} does not support ${lang_code} language. Provide language as defined in asr_models_languages_map"
exit 1
fi
fi
modified_asr_acoustic_model=${asr_acoustic_model//./-}
modified_lang_code="_${lang_code//-/_}"
modified_lang_code=${modified_lang_code,,}
if [[ ${modified_lang_code} == "_multi" ]]; then
modified_lang_code=""
fi
# check if prebuilt RMIR with accessory model is to be used
accessory_model=""
if [[ ${asr_accessory_model} != "" ]]; then
if [[ ${asr_accessory_model} != "diarizer" && ${asr_accessory_model} != "silero" && ${asr_accessory_model} != "tele" ]]; then
echo "Invalid accessory model ${asr_accessory_model}. Only diarizer, silero and tele are supported"
exit 1
fi
if [[ ${asr_acoustic_model} != "parakeet_1.1b" ]]; then
echo "Only parakeet_1.1b + ${asr_accessory_model} is available as prebuilt model. Perform riva-build to create RMIR for other ASR models with ${asr_accessory_model}"
exit 1
fi
if [[ ${use_asr_greedy_decoder} == "true" ]]; then
echo "Greedy decoder is not supported with accessory models. Set use_asr_greedy_decoder to false"
exit 1
fi
if [[ ${use_asr_streaming_throughput_mode} == "true" && ${asr_accessory_model} == "diarizer" ]]; then
echo "Streaming throughput mode is not supported with accessory model ${asr_accessory_model}, Set use_asr_streaming_throughput_mode to false"
exit 1
fi
accessory_model="_${asr_accessory_model}"
fi
# check if greedy decoder should be used
decoder=""
if [[ ${use_asr_greedy_decoder} == "true" || \
${asr_acoustic_model} == "parakeet_1.1b_unified_ml_cs_universal" || \
${asr_acoustic_model} == "parakeet_1.1b_unified_ml_cs_concat" || \
${asr_acoustic_model} == "parakeet-rnnt_1.1b" || \
${asr_acoustic_model} == "parakeet-rnnt_1.1b_unified_ml_cs_universal" ]]; then
decoder="_gre"
fi
# check if streaming throughput mode is to be used
streaming_mode=""
if [[ ${use_asr_streaming_throughput_mode} == "true" ]]; then
streaming_mode="_thr"
fi
# populate ngc paths
if [[ $riva_target_gpu_family == "tegra" ]]; then
models_asr+=(
### Streaming w/ CPU decoder, best latency configuration
"${riva_ngc_org}/${riva_ngc_team}/models_asr_${modified_asr_acoustic_model}${modified_lang_code}_str:${riva_ngc_model_version}-${riva_target_gpu_family}-${riva_tegra_platform}"
)
if [[ ${deploy_offline_diarizer} == "true" ]]; then
models_asr+=(
### Offline w/ CPU decoder
"${riva_ngc_org}/${riva_ngc_team}/rmir_asr_${modified_asr_acoustic_model}${modified_lang_code}_ofl${decoder}:${riva_ngc_model_version}"
"${riva_ngc_org}/${riva_ngc_team}/rmir_diarizer_offline:${riva_ngc_model_version}"
)
fi
else
if [[ ${asr_acoustic_model} != *"whisper"* && ${asr_acoustic_model} != "parakeet-rnnt_1.1b" && ${asr_acoustic_model} != *"canary"* ]]; then
models_asr+=(
### Streaming w/ CPU decoder, best latency or best throughput configuration
"${riva_ngc_org}/${riva_ngc_team}/rmir_asr_${modified_asr_acoustic_model}${modified_lang_code}_str${streaming_mode}${decoder}${accessory_model}:${riva_ngc_model_version}"
)
fi
### Offline w/ CPU decoder
if [[ ${asr_acoustic_model} == *"whisper"* || ${asr_acoustic_model} == *"canary"* ]]; then
models_asr+=(
"${riva_ngc_org}/${riva_ngc_team}/rmir_asr_${modified_asr_acoustic_model}_ofl:${riva_ngc_model_version}"
)
else
if [[ ${asr_accessory_model} == "diarizer" ]]; then
models_asr+=(
"${riva_ngc_org}/${riva_ngc_team}/rmir_asr_${modified_asr_acoustic_model}${modified_lang_code}_ofl${decoder}:${riva_ngc_model_version}"
)
else
models_asr+=(
"${riva_ngc_org}/${riva_ngc_team}/rmir_asr_${modified_asr_acoustic_model}${modified_lang_code}_ofl${decoder}${accessory_model}:${riva_ngc_model_version}"
)
fi
if [[ ${deploy_offline_diarizer} == "true" ]]; then
models_asr+=(
"${riva_ngc_org}/${riva_ngc_team}/rmir_diarizer_offline:${riva_ngc_model_version}"
)
fi
fi
fi
### Punctuation model
if [[ ${asr_acoustic_model} != *"unified"* && ${asr_acoustic_model} != *"whisper"* && ${asr_acoustic_model} != *"canary"* ]]; then
pnc_lang=$(echo $modified_lang_code | cut -d "_" -f 2)
pnc_region=${modified_lang_code##*_}
modified_lang_code="_${pnc_lang}_${pnc_region}"
if [[ $riva_target_gpu_family == "tegra" ]]; then
if [[ "$lang_code" == "en-US" ]]; then
models_asr+=(
# "${riva_ngc_org}/${riva_ngc_team}/models_nlp_punctuation_bert_large${modified_lang_code}:${riva_ngc_model_version}-${riva_target_gpu_family}-${riva_tegra_platform}"
)
fi
models_asr+=(
"${riva_ngc_org}/${riva_ngc_team}/models_nlp_punctuation_bert_base${modified_lang_code}:${riva_ngc_model_version}-${riva_target_gpu_family}-${riva_tegra_platform}"
)
else
if [[ "$lang_code" == "en-US" ]]; then
models_asr+=(
# "${riva_ngc_org}/${riva_ngc_team}/rmir_nlp_punctuation_bert_large${modified_lang_code}:${riva_ngc_model_version}"
)
fi
models_asr+=(
"${riva_ngc_org}/${riva_ngc_team}/rmir_nlp_punctuation_bert_base${modified_lang_code}:${riva_ngc_model_version}"
)
fi
fi
done
########## NLP MODELS ##########
if [[ $riva_target_gpu_family == "tegra" ]]; then
models_nlp=(
### Bert base Punctuation model
"${riva_ngc_org}/${riva_ngc_team}/models_nlp_punctuation_bert_base_en_us:${riva_ngc_model_version}-${riva_target_gpu_family}-${riva_tegra_platform}"
# "${riva_ngc_org}/${riva_ngc_team}/models_nlp_punctuation_bert_large_en_us:${riva_ngc_model_version}-${riva_target_gpu_family}-${riva_tegra_platform}"
)
else
models_nlp=(
### Bert base Punctuation model
"${riva_ngc_org}/${riva_ngc_team}/rmir_nlp_punctuation_bert_base_en_us:${riva_ngc_model_version}"
# "${riva_ngc_org}/${riva_ngc_team}/rmir_nlp_punctuation_bert_large_en_us:${riva_ngc_model_version}"
)
fi
########## TTS MODELS ##########
models_tts=()
for lang_code in ${tts_language_code[@]}; do
# filter unsupported models on tegra platform
if [[ $riva_target_gpu_family == "tegra" ]]; then
if [[ ${tts_model} == "magpie" ]]; then
echo "${tts_model} model not available for ${riva_target_gpu_family} gpu family"
exit 1
fi
fi
# filter unsupported models and languages
supported_languages_list=(${tts_models_languages_map[${tts_model}]})
if [[ ${#supported_languages_list[@]} == 0 ]]; then
echo "Model ${tts_model} not found. Provide model name as defined in tts_models_languages_map"
exit 1
else
found=0
for lang in "${supported_languages_list[@]}"; do
if [[ ${lang} == ${lang_code} ]]; then
found=1
break
fi
done
if [[ $found == 0 ]]; then
echo "Model ${tts_model} does not support ${lang_code} language. Provide language as defined in tts_models_languages_map"
exit 1
fi
fi
modified_lang_code="_${lang_code//-/_}"
modified_lang_code=${modified_lang_code,,}
if [[ ${modified_lang_code} == "_multi" ]]; then
modified_lang_code="_multilingual"
fi
# populate ngc paths
if [[ $riva_target_gpu_family == "tegra" ]]; then
if [[ ${lang_code} == "multi" || ${lang_code} == "en-US" || ${lang_code} == "zh-CN" || ${lang_code} == "es-US" ]]; then
if [[ ${tts_model} == "pflow_hifigan" ]]; then
### This is a zero shot model for synthesizing speech using audio prompt input, require access to ea-riva-tts NGC org for using it
models_tts+=(
"gjaugwraudqz/rmir_tts_${tts_model}${modified_lang_code}_ipa:${riva_ngc_model_version}"
)
else
models_tts+=(
"${riva_ngc_org}/${riva_ngc_team}/models_tts_${tts_model}${modified_lang_code}_ipa:${riva_ngc_model_version}-${riva_target_gpu_family}-${riva_tegra_platform}"
)
fi
else
if [[ ${lang_code} != "de-DE" ]]; then
models_tts+=(
"${riva_ngc_org}/${riva_ngc_team}/models_tts_${tts_model}${modified_lang_code}_f_ipa:${riva_ngc_model_version}-${riva_target_gpu_family}-${riva_tegra_platform}"
)
fi
models_tts+=(
"${riva_ngc_org}/${riva_ngc_team}/models_tts_${tts_model}${modified_lang_code}_m_ipa:${riva_ngc_model_version}-${riva_target_gpu_family}-${riva_tegra_platform}"
)
fi
else
if [[ ${lang_code} == "multi" || ${lang_code} == "en-US" || ${lang_code} == "zh-CN" || ${lang_code} == "es-US" ]]; then
if [[ ${tts_model} == "pflow_hifigan" ]]; then
### This is a zero shot model for synthesizing speech using audio prompt input, require access to ea-riva-tts NGC org for using it
models_tts+=(
"gjaugwraudqz/rmir_tts_${tts_model}${modified_lang_code}_ipa:${riva_ngc_model_version}"
)
else
models_tts+=(
"${riva_ngc_org}/${riva_ngc_team}/rmir_tts_${tts_model}${modified_lang_code}_ipa:${riva_ngc_model_version}"
)
fi
else
if [[ ${lang_code} != "de-DE" ]]; then
models_tts+=(
"${riva_ngc_org}/${riva_ngc_team}/rmir_tts_${tts_model}${modified_lang_code}_f_ipa:${riva_ngc_model_version}"
)
fi
models_tts+=(
"${riva_ngc_org}/${riva_ngc_team}/rmir_tts_${tts_model}${modified_lang_code}_m_ipa:${riva_ngc_model_version}"
)
fi
fi
done
######### NMT models ###############
# Models follow Source language _ One or more target languages model architecture
# Source or target language "any" means the model supports 32 languages mentioned in docs.
# e.g., rmir_megatronnmt_en_any_500m is a English to 32 languages megatron model
models_nmt=(
###### Megatron models
#"${riva_ngc_org}/${riva_ngc_team}/rmir_megatronnmt_any_en_500m:${riva_ngc_model_version}"
#"${riva_ngc_org}/${riva_ngc_team}/rmir_megatronnmt_en_any_500m:${riva_ngc_model_version}"
#"${riva_ngc_org}/${riva_ngc_team}/rmir_nmt_megatron_1b_any_en:${riva_ngc_model_version}"
#"${riva_ngc_org}/${riva_ngc_team}/rmir_nmt_megatron_1b_en_any:${riva_ngc_model_version}"
"${riva_ngc_org}/${riva_ngc_team}/rmir_nmt_megatron_1b_any_any:${riva_ngc_model_version}"
)
NGC_TARGET=${riva_ngc_org}
if [[ ! -z ${riva_ngc_team} ]]; then
NGC_TARGET="${NGC_TARGET}/${riva_ngc_team}"
else
team="\"\""
fi
# Specify paths to SSL Key and Certificate files to use TLS/SSL Credentials for a secured connection.
# If either are empty, an insecure connection will be used.
# Stored within container at /ssl/servert.crt and /ssl/server.key
# Optional, one can also specify a root certificate, stored within container at /ssl/root_server.crt
# Set ssl_use_mutual_auth to true for enabling mutual TLS (mTLS) authentication
ssl_server_cert=""
ssl_server_key=""
ssl_root_cert=""
ssl_use_mutual_auth=false
# define Docker images required to run Riva
image_speech_api="nvcr.io/${NGC_TARGET}/riva-speech:${riva_ngc_image_version}"
# daemon names
riva_daemon_speech="riva-speech"
if [[ $riva_target_gpu_family != "tegra" ]]; then
riva_daemon_client="riva-client"
fi |