fciannella's picture
fixing the prompts to avoid special characters for spoken text
378e880
import os
import json
import logging
from datetime import datetime
from pathlib import Path
from typing import Any, Dict, List
from langgraph.func import entrypoint, task
from langgraph.graph import add_messages
from langchain_openai import ChatOpenAI
from langchain_core.messages import (
SystemMessage,
HumanMessage,
AIMessage,
BaseMessage,
ToolCall,
ToolMessage,
)
# ---- Tools (wrap existing logic/fixtures) ----
try:
from .tools import (
get_customer_profile,
find_account_by_last4,
parse_date_range,
find_customer,
check_upgrade_options,
verify_identity,
list_accounts,
fetch_activity,
detect_fees,
explain_fee,
check_dispute_eligibility,
create_dispute,
)
except ImportError:
import sys
sys.path.append(os.path.dirname(__file__))
from tools import ( # type: ignore
get_customer_profile,
find_account_by_last4,
parse_date_range,
find_customer,
check_upgrade_options,
verify_identity,
list_accounts,
fetch_activity,
detect_fees,
explain_fee,
check_dispute_eligibility,
create_dispute,
)
# Also import a direct finder for name→customer_id in case the LLM doesn't call the tool before verification
try:
from .logic import find_customer_by_name # type: ignore
except Exception:
try:
import sys as _sys, os as _os
_sys.path.append(os.path.dirname(__file__))
from logic import find_customer_by_name # type: ignore
except Exception:
find_customer_by_name = None # type: ignore
"""ReAct agent entrypoint and system prompt."""
SYSTEM_PROMPT = (
"You are a warm, cheerful banking assistant on a phone call. "
"Start with a brief greeting and small talk. If the caller's identity is unknown, politely ask for their full name (first and last). If they provide only a single given name, ask for their last name next. "
"Before any account lookups or actions, you MUST verify the caller's identity using the verify_identity tool. "
"Ask for date of birth (do not specify a format) and either last-4 of account or a secret answer. If the tool returns a secret question, read it back verbatim and ask for the answer. "
"Normalize any provided DOB to YYYY-MM-DD before calling verify_identity. "
"If the user provides first and last name, FIRST call find_customer to resolve customer_id and then include that customer_id in subsequent tool calls. "
"Only after verified=true, re-use the authenticated account if the customer confirms it's the same; "
"otherwise, ask for the last 4 of the other account and use find_account_by_last4. "
"Then ASK THE CUSTOMER for the specific fee date or a date range (e.g., last 30/90 days). Do not assume a default window. "
"After the customer provides a timeframe, first call parse_date_range. If it returns an error, ask for clarification and DO NOT proceed. Then call detect_fees. If detect_fees returns an error (invalid/future/no_fees), ask for clarification or suggest a wider range (e.g., last 90 days) and DO NOT invent a fee. Only once there are fee events, continue. FIRST, explain the relevant fee clearly (what it is and why it happened) using simple language. Do not mention your training data cutoff; rely on the provided tools and fixtures to answer. "
"SECOND, confirm understanding or offer a brief clarification if needed. If the customer asks about a refund or relief, call check_dispute_eligibility; if eligible, ask permission and then call create_dispute; otherwise, suggest preventive tips. "
"THIRD, ONLY AFTER explanation and any refund/relief handling, you MUST proactively consider upgrades: call check_upgrade_options with the recent fee events and propose ONE concise package (the highest estimated net benefit) even if the user doesn't ask. If net benefit is positive, emphasize savings; if not, present as optional convenience. "
"Keep messages short (1–3 sentences), empathetic, and helpful. "
"TTS SAFETY: Output must be plain text suitable for text-to-speech. Do not use markdown, bullets, asterisks, emojis, or special typography. Use only ASCII punctuation and straight quotes."
)
_MODEL_NAME = os.getenv("REACT_MODEL", os.getenv("CLARIFY_MODEL", "gpt-4o"))
_LLM = ChatOpenAI(model=_MODEL_NAME, temperature=0.3)
_TOOLS = [
get_customer_profile,
find_account_by_last4,
parse_date_range,
find_customer,
check_upgrade_options,
verify_identity,
list_accounts,
fetch_activity,
detect_fees,
explain_fee,
check_dispute_eligibility,
create_dispute,
]
_LLM_WITH_TOOLS = _LLM.bind_tools(_TOOLS)
_TOOLS_BY_NAME = {t.name: t for t in _TOOLS}
# Simple per-run context storage (thread-safe enough for local dev worker)
_CURRENT_THREAD_ID: str | None = None
_CURRENT_CUSTOMER_ID: str | None = None
# ---- Logger ----
logger = logging.getLogger("RBC_ReActFeesAgent")
if not logger.handlers:
_stream = logging.StreamHandler()
_stream.setLevel(logging.INFO)
_fmt = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
_stream.setFormatter(_fmt)
logger.addHandler(_stream)
try:
_file = logging.FileHandler(str(Path(__file__).resolve().parents[2] / "app.log"))
_file.setLevel(logging.INFO)
_file.setFormatter(_fmt)
logger.addHandler(_file)
except Exception:
pass
logger.setLevel(logging.INFO)
_DEBUG = os.getenv("RBC_FEES_DEBUG", "0") not in ("", "0", "false", "False")
def _get_thread_id(config: Dict[str, Any] | None, messages: List[BaseMessage]) -> str:
cfg = config or {}
# Try dict-like and attribute-like access
def _safe_get(container: Any, key: str, default: Any = None) -> Any:
try:
if isinstance(container, dict):
return container.get(key, default)
if hasattr(container, "get"):
return container.get(key, default)
if hasattr(container, key):
return getattr(container, key, default)
except Exception:
return default
return default
try:
conf = _safe_get(cfg, "configurable", {}) or {}
for key in ("thread_id", "session_id", "thread"):
val = _safe_get(conf, key)
if isinstance(val, str) and val:
return val
except Exception:
pass
# Fallback: look for session_id on the latest human message additional_kwargs
try:
for m in reversed(messages or []):
addl = getattr(m, "additional_kwargs", None)
if isinstance(addl, dict) and isinstance(addl.get("session_id"), str) and addl.get("session_id"):
return addl.get("session_id")
if isinstance(m, dict):
ak = m.get("additional_kwargs") or {}
if isinstance(ak, dict) and isinstance(ak.get("session_id"), str) and ak.get("session_id"):
return ak.get("session_id")
except Exception:
pass
return "unknown"
def _trim_messages(messages: List[BaseMessage], max_messages: int = 40) -> List[BaseMessage]:
if len(messages) <= max_messages:
return messages
return messages[-max_messages:]
def _sanitize_conversation(messages: List[BaseMessage]) -> List[BaseMessage]:
"""Ensure tool messages only follow an assistant message with tool_calls.
Drops orphan tool messages that could cause OpenAI 400 errors.
"""
sanitized: List[BaseMessage] = []
pending_tool_ids: set[str] | None = None
for m in messages:
try:
if isinstance(m, AIMessage):
sanitized.append(m)
tool_calls = getattr(m, "tool_calls", None) or []
ids: set[str] = set()
for tc in tool_calls:
# ToolCall can be mapping-like or object-like
if isinstance(tc, dict):
_id = tc.get("id") or tc.get("tool_call_id")
else:
_id = getattr(tc, "id", None) or getattr(tc, "tool_call_id", None)
if isinstance(_id, str):
ids.add(_id)
pending_tool_ids = ids if ids else None
continue
if isinstance(m, ToolMessage):
if pending_tool_ids and isinstance(getattr(m, "tool_call_id", None), str) and m.tool_call_id in pending_tool_ids:
sanitized.append(m)
# keep accepting subsequent tool messages for the same assistant turn
continue
# Orphan tool message: drop
continue
# Any other message resets expectation
sanitized.append(m)
pending_tool_ids = None
except Exception:
# On any unexpected shape, include as-is but reset to avoid pairing issues
sanitized.append(m)
pending_tool_ids = None
# Ensure the conversation doesn't start with a ToolMessage
while sanitized and isinstance(sanitized[0], ToolMessage):
sanitized.pop(0)
return sanitized
def _today_string() -> str:
override = os.getenv("RBC_FEES_TODAY_OVERRIDE")
if isinstance(override, str) and override.strip():
try:
datetime.strptime(override.strip(), "%Y-%m-%d")
return override.strip()
except Exception:
pass
return datetime.utcnow().strftime("%Y-%m-%d")
def _system_messages() -> List[BaseMessage]:
today = _today_string()
return [
SystemMessage(content=SYSTEM_PROMPT),
SystemMessage(content=(
f"Today is {today} (UTC). When the user mentions any date or timeframe, first call parse_date_range. "
"Do not claim a date is in the future unless it is strictly after today. "
"Rely on tools/fixtures and do not mention training data cutoffs."
)),
]
@task()
def call_llm(messages: List[BaseMessage]) -> AIMessage:
"""LLM decides whether to call a tool or not."""
if _DEBUG:
try:
preview = [f"{getattr(m,'type', getattr(m,'role',''))}:{str(getattr(m,'content', m))[:80]}" for m in messages[-6:]]
logger.info("call_llm: messages_count=%s preview=%s", len(messages), preview)
except Exception:
logger.info("call_llm: messages_count=%s", len(messages))
return _LLM_WITH_TOOLS.invoke(_system_messages() + messages)
@task()
def call_tool(tool_call: ToolCall) -> ToolMessage:
"""Execute a tool call and wrap result in a ToolMessage."""
tool = _TOOLS_BY_NAME[tool_call["name"]]
args = tool_call.get("args") or {}
# Auto-inject session/customer context if missing for identity and other tools
if tool.name == "verify_identity":
if "session_id" not in args and _CURRENT_THREAD_ID:
args["session_id"] = _CURRENT_THREAD_ID
if "customer_id" not in args and _CURRENT_CUSTOMER_ID:
args["customer_id"] = _CURRENT_CUSTOMER_ID
if tool.name == "list_accounts":
if "customer_id" not in args and _CURRENT_CUSTOMER_ID:
args["customer_id"] = _CURRENT_CUSTOMER_ID
if _DEBUG:
try:
logger.info("call_tool: name=%s args_keys=%s", tool.name, list(args.keys()))
except Exception:
logger.info("call_tool: name=%s", tool.name)
result = tool.invoke(args)
# Ensure string content
content = result if isinstance(result, str) else json.dumps(result)
return ToolMessage(content=content, tool_call_id=tool_call["id"], name=tool.name)
@entrypoint()
def agent(messages: List[BaseMessage], previous: List[BaseMessage] | None, config: Dict[str, Any] | None = None):
# Start from full conversation history (previous + new)
prev_list = list(previous or [])
new_list = list(messages or [])
convo: List[BaseMessage] = prev_list + new_list
# Trim to avoid context bloat
convo = _trim_messages(convo, max_messages=int(os.getenv("RBC_FEES_MAX_MSGS", "40")))
# Sanitize to avoid orphan tool messages after trimming
convo = _sanitize_conversation(convo)
thread_id = _get_thread_id(config, new_list)
logger.info("agent start: thread_id=%s total_in=%s (prev=%s, new=%s)", thread_id, len(convo), len(prev_list), len(new_list))
# Establish default customer from config (or fallback to cust_test)
conf = (config or {}).get("configurable", {}) if isinstance(config, dict) else {}
default_customer = conf.get("customer_id") or conf.get("user_email") or "cust_test"
# Heuristic: infer customer_id from latest human name if provided (e.g., "I am Alice Stone")
inferred_customer: str | None = None
try:
recent_humans = [m for m in reversed(new_list) if (getattr(m, "type", None) == "human" or getattr(m, "role", None) == "user" or (isinstance(m, dict) and m.get("type") == "human"))]
text = None
for m in recent_humans[:3]:
text = (getattr(m, "content", None) if not isinstance(m, dict) else m.get("content")) or ""
if isinstance(text, str) and text.strip():
break
if isinstance(text, str):
tokens = [t for t in text.replace(',', ' ').split() if t.isalpha()]
if len(tokens) >= 2 and find_customer_by_name is not None:
# Try adjacent pairs as first/last
for i in range(len(tokens) - 1):
fn = tokens[i]
ln = tokens[i + 1]
found = find_customer_by_name(fn, ln) # type: ignore
if isinstance(found, dict) and found.get("customer_id"):
inferred_customer = found.get("customer_id")
break
except Exception:
pass
# Update module context
global _CURRENT_THREAD_ID, _CURRENT_CUSTOMER_ID
_CURRENT_THREAD_ID = thread_id
_CURRENT_CUSTOMER_ID = inferred_customer or default_customer
llm_response = call_llm(convo).result()
while True:
tool_calls = getattr(llm_response, "tool_calls", None) or []
if not tool_calls:
break
# Execute tools (in parallel) and append results
futures = [call_tool(tc) for tc in tool_calls]
tool_results = [f.result() for f in futures]
if _DEBUG:
try:
logger.info("tool_results: count=%s names=%s", len(tool_results), [tr.name for tr in tool_results])
except Exception:
pass
convo = add_messages(convo, [llm_response, *tool_results])
llm_response = call_llm(convo).result()
# Append final assistant turn
convo = add_messages(convo, [llm_response])
final_text = getattr(llm_response, "content", "") or ""
ai = AIMessage(content=final_text if isinstance(final_text, str) else str(final_text))
logger.info("agent done: thread_id=%s total_messages=%s final_len=%s", thread_id, len(convo), len(ai.content))
# Save only the merged conversation (avoid duplicating previous)
return entrypoint.final(value=ai, save=convo)