Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import spaces | |
| from transformers import pipeline, AutoTokenizer | |
| import torch | |
| import logging | |
| from concurrent.futures import ThreadPoolExecutor, as_completed | |
| # Configure logging/logger | |
| logging.basicConfig( | |
| level=logging.INFO, | |
| format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' | |
| ) | |
| logger = logging.getLogger(__name__) | |
| # Stores for models and tokenizers | |
| tokenizers = {} | |
| pipelines = {} | |
| # Predefined list of models to compare (can be expanded) | |
| model_options = { | |
| "Foundation-Sec-8B": "fdtn-ai/Foundation-Sec-8B", | |
| "Llama-3.1-8B": "meta-llama/Llama-3.1-8B", | |
| } | |
| # Initialize models at startup | |
| for model_name, model_path in model_options.items(): | |
| try: | |
| logger.info(f"Initializing text generation model: {model_path}") | |
| tokenizers[model_path] = AutoTokenizer.from_pretrained(model_path) | |
| pipelines[model_path] = pipeline( | |
| "text-generation", | |
| model=model_path, | |
| tokenizer=tokenizers[model_path], | |
| torch_dtype=torch.bfloat16, | |
| device_map="auto", | |
| trust_remote_code=True | |
| ) | |
| logger.info(f"Model initialized successfully: {model_path}") | |
| except Exception as e: | |
| logger.error(f"Error initializing model {model_path}: {str(e)}") | |
| def generate_text_local(model_path, prompt, max_new_tokens=512, temperature=0.7, top_p=0.95): | |
| """Local text generation""" | |
| try: | |
| # Use the already initialized model | |
| if model_path in pipelines: | |
| model_pipeline = pipelines[model_path] | |
| # Log GPU usage information | |
| device_info = next(model_pipeline.model.parameters()).device | |
| logger.info(f"Running text generation with {model_path} on device: {device_info}") | |
| outputs = model_pipeline( | |
| prompt, | |
| max_new_tokens=max_new_tokens, | |
| do_sample=True, | |
| temperature=temperature, | |
| top_p=top_p, | |
| clean_up_tokenization_spaces=True, | |
| ) | |
| return outputs[0]["generated_text"].replace(prompt, "").strip() | |
| else: | |
| return f"Error: Model {model_path} not initialized" | |
| except Exception as e: | |
| logger.error(f"Error in text generation with {model_path}: {str(e)}") | |
| return f"Error: {str(e)}" | |
| # Move the generate_responses function outside of create_demo | |
| def generate_responses(prompt, max_tokens, temperature, top_p, selected_models): | |
| if len(selected_models) != 2: | |
| return "Error: Please select exactly two models to compare.", "" | |
| if len(selected_models) == 0: | |
| return "Error: Please select at least one model", "" | |
| # 選択されたモデルの結果を格納する辞書 | |
| responses = {} | |
| futures_to_model = {} # 各futureとモデルを紐づけるための辞書 | |
| with ThreadPoolExecutor(max_workers=len(selected_models)) as executor: | |
| # 各モデルに対してタスクを提出 | |
| futures = [] | |
| for model_name in selected_models: | |
| model_path = model_options[model_name] | |
| future = executor.submit( | |
| generate_text_local, | |
| model_path, | |
| prompt, | |
| max_new_tokens=max_tokens, # Fixed parameter name to match the function | |
| temperature=temperature, | |
| top_p=top_p | |
| ) | |
| futures.append(future) | |
| futures_to_model[future] = model_name | |
| # 結果の収集 | |
| for future in as_completed(futures): | |
| model_name = futures_to_model[future] | |
| responses[model_name] = future.result() | |
| # モデル名を冒頭に付加して返す | |
| model1_output = f"{selected_models[0]} Output:\n\n{responses.get(selected_models[0], '')}" | |
| model2_output = f"{selected_models[1]} Output:\n\n{responses.get(selected_models[1], '')}" | |
| return model1_output, model2_output | |
| # Build Gradio app | |
| def create_demo(): | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# AI Model Comparison Tool for Security Analysis 🔒") | |
| gr.Markdown( | |
| """ | |
| Compare how different AI models analyze security vulnerabilities side-by-side. | |
| Select two models, input security-related text, and see how each model processes vulnerability information! | |
| """ | |
| ) | |
| # Input Section | |
| with gr.Row(): | |
| prompt = gr.Textbox( | |
| value="""CVE-2021-44228 is a remote code execution flaw in Apache Log4j2 via unsafe JNDI lookups ("Log4Shell"). The CWE is CWE-502. | |
| CVE-2017-0144 is a remote code execution vulnerability in Microsoft's SMBv1 server ("EternalBlue") due to a buffer overflow. The CWE is CWE-119. | |
| CVE-2014-0160 is an information-disclosure bug in OpenSSL's heartbeat extension ("Heartbleed") causing out-of-bounds reads. The CWE is CWE-125. | |
| CVE-2017-5638 is a remote code execution issue in Apache Struts 2's Jakarta Multipart parser stemming from improper input validation of the Content-Type header. The CWE is CWE-20. | |
| CVE-2019-0708 is a remote code execution vulnerability in Microsoft's Remote Desktop Services ("BlueKeep") triggered by a use-after-free. The CWE is CWE-416. | |
| CVE-2015-10011 is a vulnerability about OpenDNS OpenResolve improper log output neutralization. The CWE is""", | |
| label="Prompt" | |
| ) | |
| with gr.Row(): | |
| max_new_tokens = gr.Slider(minimum=1, maximum=2048, value=3, step=1, label="Max new tokens") | |
| temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature") | |
| top_p = gr.Slider( | |
| minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)" | |
| ) | |
| # Model Selection Section | |
| selected_models = gr.CheckboxGroup( | |
| choices=list(model_options.keys()), | |
| label="Select exactly two model to compare", | |
| value=list(model_options.keys())[:2], # Default models | |
| ) | |
| # Dynamic Response Section | |
| response_box1 = gr.Textbox(label="Response from Model 1", interactive=False) | |
| response_box2 = gr.Textbox(label="Response from Model 2", interactive=False) | |
| # Add a button for generating responses | |
| submit_button = gr.Button("Generate Responses") | |
| submit_button.click( | |
| generate_responses, | |
| inputs=[prompt, max_new_tokens, temperature, top_p, selected_models], | |
| outputs=[response_box1, response_box2], # Link to response boxes | |
| ) | |
| return demo | |
| if __name__ == "__main__": | |
| demo = create_demo() | |
| demo.launch() |