Spaces:
Running
on
Zero
Running
on
Zero
README.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
---
|
| 2 |
-
title: Compare Models
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: gray
|
| 5 |
colorTo: yellow
|
| 6 |
sdk: gradio
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Compare Security Models
|
| 3 |
+
emoji: 🐼
|
| 4 |
colorFrom: gray
|
| 5 |
colorTo: yellow
|
| 6 |
sdk: gradio
|
app.py
CHANGED
|
@@ -1,52 +1,58 @@
|
|
| 1 |
-
import os
|
| 2 |
import gradio as gr
|
| 3 |
-
from huggingface_hub import login, InferenceClient
|
| 4 |
import spaces
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
#
|
| 7 |
-
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
# Predefined list of models to compare (can be expanded)
|
| 11 |
model_options = {
|
| 12 |
-
"
|
| 13 |
-
"Qwen-2.5-1.5B-Instruct": "Qwen/Qwen2.5-1.5B-Instruct",
|
| 14 |
-
"Llama-3.2-1B": "meta-llama/Llama-3.2-1B",
|
| 15 |
-
"DeepSeek-V2.5": "deepseek-ai/DeepSeek-V2.5",
|
| 16 |
-
"Athene-V2-Chat": "Nexusflow/Athene-V2-Chat",
|
| 17 |
}
|
| 18 |
|
| 19 |
-
# Initialize clients for models
|
| 20 |
-
clients = {name: InferenceClient(repo_id) for name, repo_id in model_options.items()}
|
| 21 |
-
|
| 22 |
# Define the response function
|
| 23 |
@spaces.GPU
|
| 24 |
-
def
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
|
|
|
| 48 |
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
# Build Gradio app
|
| 52 |
def create_demo():
|
|
@@ -77,31 +83,34 @@ def create_demo():
|
|
| 77 |
# Model Selection Section
|
| 78 |
selected_models = gr.CheckboxGroup(
|
| 79 |
choices=list(model_options.keys()),
|
| 80 |
-
label="Select exactly two
|
| 81 |
-
value=["
|
| 82 |
)
|
| 83 |
|
| 84 |
# Dynamic Response Section
|
| 85 |
response_box1 = gr.Textbox(label="Response from Model 1", interactive=False)
|
| 86 |
-
response_box2 = gr.Textbox(label="Response from Model 2", interactive=False)
|
| 87 |
|
| 88 |
# Function to generate responses
|
| 89 |
def generate_responses(
|
| 90 |
message, system_message, max_tokens, temperature, top_p, selected_models
|
| 91 |
):
|
| 92 |
-
if len(selected_models) != 2:
|
| 93 |
-
|
| 94 |
-
responses =
|
| 95 |
-
message, [], system_message, max_tokens, temperature, top_p, selected_models
|
|
|
|
|
|
|
| 96 |
)
|
| 97 |
-
return responses.get(selected_models[0], ""), responses.get(selected_models[1], "")
|
| 98 |
-
|
| 99 |
# Add a button for generating responses
|
| 100 |
submit_button = gr.Button("Generate Responses")
|
| 101 |
submit_button.click(
|
| 102 |
generate_responses,
|
| 103 |
inputs=[user_message, system_message, max_tokens, temperature, top_p, selected_models],
|
| 104 |
-
outputs=[response_box1, response_box2], # Link to response boxes
|
|
|
|
| 105 |
)
|
| 106 |
|
| 107 |
return demo
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import spaces
|
| 3 |
+
from transformers import pipeline
|
| 4 |
+
import torch
|
| 5 |
+
import logging
|
| 6 |
|
| 7 |
+
# Configure logging/logger
|
| 8 |
+
logging.basicConfig(
|
| 9 |
+
level=logging.INFO,
|
| 10 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
| 11 |
+
)
|
| 12 |
+
logger = logging.getLogger(__name__)
|
| 13 |
|
| 14 |
# Predefined list of models to compare (can be expanded)
|
| 15 |
model_options = {
|
| 16 |
+
"Foundation-Sec-8B": pipeline("text-generation", model="fdtn-ai/Foundation-Sec-8B"),
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
}
|
| 18 |
|
|
|
|
|
|
|
|
|
|
| 19 |
# Define the response function
|
| 20 |
@spaces.GPU
|
| 21 |
+
def generate_text_local(model_pipeline, prompt):
|
| 22 |
+
"""Local text generation"""
|
| 23 |
+
try:
|
| 24 |
+
logger.info(f"Running local text generation with {model_pipeline.path}")
|
| 25 |
+
|
| 26 |
+
# Move model to GPU (entire pipeline)
|
| 27 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 28 |
+
model_pipeline.model = model_pipeline.model.to(device)
|
| 29 |
+
|
| 30 |
+
# Set other pipeline components to use GPU
|
| 31 |
+
if hasattr(model_pipeline, "device"):
|
| 32 |
+
model_pipeline.device = device
|
| 33 |
+
|
| 34 |
+
# Record device information
|
| 35 |
+
device_info = next(model_pipeline.model.parameters()).device
|
| 36 |
+
logger.info(f"Model {model_pipeline.path} is running on device: {device_info}")
|
| 37 |
+
|
| 38 |
+
outputs = model_pipeline(
|
| 39 |
+
prompt,
|
| 40 |
+
max_new_tokens=3, # = model.generate(max_new_tokens=3, …)
|
| 41 |
+
do_sample=True,
|
| 42 |
+
temperature=0.1,
|
| 43 |
+
top_p=0.9,
|
| 44 |
+
clean_up_tokenization_spaces=True, # echo 部分を整形
|
| 45 |
+
)
|
| 46 |
|
| 47 |
+
# Move model back to CPU
|
| 48 |
+
model_pipeline.model = model_pipeline.model.to("cpu")
|
| 49 |
+
if hasattr(model_pipeline, "device"):
|
| 50 |
+
model_pipeline.device = torch.device("cpu")
|
| 51 |
+
|
| 52 |
+
return outputs[0]["generated_text"].replace(prompt, "").strip()
|
| 53 |
+
except Exception as e:
|
| 54 |
+
logger.error(f"Error in local text generation with {model_pipeline.path}: {str(e)}")
|
| 55 |
+
return f"Error: {str(e)}"
|
| 56 |
|
| 57 |
# Build Gradio app
|
| 58 |
def create_demo():
|
|
|
|
| 83 |
# Model Selection Section
|
| 84 |
selected_models = gr.CheckboxGroup(
|
| 85 |
choices=list(model_options.keys()),
|
| 86 |
+
label="Select exactly two model to compare",
|
| 87 |
+
value=["Foundation-Sec-8B"], # Default models
|
| 88 |
)
|
| 89 |
|
| 90 |
# Dynamic Response Section
|
| 91 |
response_box1 = gr.Textbox(label="Response from Model 1", interactive=False)
|
| 92 |
+
#response_box2 = gr.Textbox(label="Response from Model 2", interactive=False)
|
| 93 |
|
| 94 |
# Function to generate responses
|
| 95 |
def generate_responses(
|
| 96 |
message, system_message, max_tokens, temperature, top_p, selected_models
|
| 97 |
):
|
| 98 |
+
#if len(selected_models) != 2:
|
| 99 |
+
# return "Error: Please select exactly two models to compare.", ""
|
| 100 |
+
responses = generate_text_local(
|
| 101 |
+
#message, [], system_message, max_tokens, temperature, top_p, selected_models
|
| 102 |
+
selected_models[0],
|
| 103 |
+
message
|
| 104 |
)
|
| 105 |
+
#return responses.get(selected_models[0], ""), responses.get(selected_models[1], "")
|
| 106 |
+
return responses
|
| 107 |
# Add a button for generating responses
|
| 108 |
submit_button = gr.Button("Generate Responses")
|
| 109 |
submit_button.click(
|
| 110 |
generate_responses,
|
| 111 |
inputs=[user_message, system_message, max_tokens, temperature, top_p, selected_models],
|
| 112 |
+
#outputs=[response_box1, response_box2], # Link to response boxes
|
| 113 |
+
outputs=[response_box1]
|
| 114 |
)
|
| 115 |
|
| 116 |
return demo
|