Spaces:
Sleeping
Sleeping
| # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. | |
| import argparse | |
| import binascii | |
| import os | |
| import os.path as osp | |
| import torchvision.transforms.functional as TF | |
| import torch.nn.functional as F | |
| import imageio | |
| import torch | |
| import decord | |
| import torchvision | |
| from PIL import Image | |
| import numpy as np | |
| from rembg import remove, new_session | |
| import random | |
| __all__ = ['cache_video', 'cache_image', 'str2bool'] | |
| from PIL import Image | |
| def seed_everything(seed: int): | |
| random.seed(seed) | |
| np.random.seed(seed) | |
| torch.manual_seed(seed) | |
| if torch.cuda.is_available(): | |
| torch.cuda.manual_seed(seed) | |
| if torch.backends.mps.is_available(): | |
| torch.mps.manual_seed(seed) | |
| def resample(video_fps, video_frames_count, max_target_frames_count, target_fps, start_target_frame ): | |
| import math | |
| if video_fps < target_fps : | |
| video_fps = target_fps | |
| video_frame_duration = 1 /video_fps | |
| target_frame_duration = 1 / target_fps | |
| target_time = start_target_frame * target_frame_duration | |
| frame_no = math.ceil(target_time / video_frame_duration) | |
| cur_time = frame_no * video_frame_duration | |
| frame_ids =[] | |
| while True: | |
| if max_target_frames_count != 0 and len(frame_ids) >= max_target_frames_count : | |
| break | |
| add_frames_count = math.ceil( (target_time -cur_time) / video_frame_duration ) | |
| frame_no += add_frames_count | |
| if frame_no >= video_frames_count: | |
| break | |
| frame_ids.append(frame_no) | |
| cur_time += add_frames_count * video_frame_duration | |
| target_time += target_frame_duration | |
| frame_ids = frame_ids[:max_target_frames_count] | |
| return frame_ids | |
| def get_video_frame(file_name, frame_no): | |
| decord.bridge.set_bridge('torch') | |
| reader = decord.VideoReader(file_name) | |
| frame = reader.get_batch([frame_no]).squeeze(0) | |
| img = Image.fromarray(frame.numpy().astype(np.uint8)) | |
| return img | |
| def resize_lanczos(img, h, w): | |
| img = Image.fromarray(np.clip(255. * img.movedim(0, -1).cpu().numpy(), 0, 255).astype(np.uint8)) | |
| img = img.resize((w,h), resample=Image.Resampling.LANCZOS) | |
| return torch.from_numpy(np.array(img).astype(np.float32) / 255.0).movedim(-1, 0) | |
| def remove_background(img, session=None): | |
| if session ==None: | |
| session = new_session() | |
| img = Image.fromarray(np.clip(255. * img.movedim(0, -1).cpu().numpy(), 0, 255).astype(np.uint8)) | |
| img = remove(img, session=session, alpha_matting = True, bgcolor=[255, 255, 255, 0]).convert('RGB') | |
| return torch.from_numpy(np.array(img).astype(np.float32) / 255.0).movedim(-1, 0) | |
| def calculate_new_dimensions(canvas_height, canvas_width, height, width, fit_into_canvas, block_size = 16): | |
| if fit_into_canvas: | |
| scale1 = min(canvas_height / height, canvas_width / width) | |
| scale2 = min(canvas_width / height, canvas_height / width) | |
| scale = max(scale1, scale2) | |
| else: | |
| scale = (canvas_height * canvas_width / (height * width))**(1/2) | |
| new_height = round( height * scale / block_size) * block_size | |
| new_width = round( width * scale / block_size) * block_size | |
| return new_height, new_width | |
| def resize_and_remove_background(img_list, budget_width, budget_height, rm_background, fit_into_canvas = False ): | |
| if rm_background > 0: | |
| session = new_session() | |
| output_list =[] | |
| for i, img in enumerate(img_list): | |
| width, height = img.size | |
| if fit_into_canvas: | |
| white_canvas = np.ones((budget_height, budget_width, 3), dtype=np.uint8) * 255 | |
| scale = min(budget_height / height, budget_width / width) | |
| new_height = int(height * scale) | |
| new_width = int(width * scale) | |
| resized_image= img.resize((new_width,new_height), resample=Image.Resampling.LANCZOS) | |
| top = (budget_height - new_height) // 2 | |
| left = (budget_width - new_width) // 2 | |
| white_canvas[top:top + new_height, left:left + new_width] = np.array(resized_image) | |
| resized_image = Image.fromarray(white_canvas) | |
| else: | |
| scale = (budget_height * budget_width / (height * width))**(1/2) | |
| new_height = int( round(height * scale / 16) * 16) | |
| new_width = int( round(width * scale / 16) * 16) | |
| resized_image= img.resize((new_width,new_height), resample=Image.Resampling.LANCZOS) | |
| if rm_background == 1 or rm_background == 2 and i > 0 : | |
| # resized_image = remove(resized_image, session=session, alpha_matting_erode_size = 1,alpha_matting_background_threshold = 70, alpha_foreground_background_threshold = 100, alpha_matting = True, bgcolor=[255, 255, 255, 0]).convert('RGB') | |
| resized_image = remove(resized_image, session=session, alpha_matting_erode_size = 1, alpha_matting = True, bgcolor=[255, 255, 255, 0]).convert('RGB') | |
| output_list.append(resized_image) #alpha_matting_background_threshold = 30, alpha_foreground_background_threshold = 200, | |
| return output_list | |
| def rand_name(length=8, suffix=''): | |
| name = binascii.b2a_hex(os.urandom(length)).decode('utf-8') | |
| if suffix: | |
| if not suffix.startswith('.'): | |
| suffix = '.' + suffix | |
| name += suffix | |
| return name | |
| def cache_video(tensor, | |
| save_file=None, | |
| fps=30, | |
| suffix='.mp4', | |
| nrow=8, | |
| normalize=True, | |
| value_range=(-1, 1), | |
| retry=5): | |
| # cache file | |
| cache_file = osp.join('/tmp', rand_name( | |
| suffix=suffix)) if save_file is None else save_file | |
| # save to cache | |
| error = None | |
| for _ in range(retry): | |
| try: | |
| # preprocess | |
| tensor = tensor.clamp(min(value_range), max(value_range)) | |
| tensor = torch.stack([ | |
| torchvision.utils.make_grid( | |
| u, nrow=nrow, normalize=normalize, value_range=value_range) | |
| for u in tensor.unbind(2) | |
| ], | |
| dim=1).permute(1, 2, 3, 0) | |
| tensor = (tensor * 255).type(torch.uint8).cpu() | |
| # write video | |
| writer = imageio.get_writer( | |
| cache_file, fps=fps, codec='libx264', quality=8) | |
| for frame in tensor.numpy(): | |
| writer.append_data(frame) | |
| writer.close() | |
| return cache_file | |
| except Exception as e: | |
| error = e | |
| continue | |
| else: | |
| print(f'cache_video failed, error: {error}', flush=True) | |
| return None | |
| def cache_image(tensor, | |
| save_file, | |
| nrow=8, | |
| normalize=True, | |
| value_range=(-1, 1), | |
| retry=5): | |
| # cache file | |
| suffix = osp.splitext(save_file)[1] | |
| if suffix.lower() not in [ | |
| '.jpg', '.jpeg', '.png', '.tiff', '.gif', '.webp' | |
| ]: | |
| suffix = '.png' | |
| # save to cache | |
| error = None | |
| for _ in range(retry): | |
| try: | |
| tensor = tensor.clamp(min(value_range), max(value_range)) | |
| torchvision.utils.save_image( | |
| tensor, | |
| save_file, | |
| nrow=nrow, | |
| normalize=normalize, | |
| value_range=value_range) | |
| return save_file | |
| except Exception as e: | |
| error = e | |
| continue | |
| def str2bool(v): | |
| """ | |
| Convert a string to a boolean. | |
| Supported true values: 'yes', 'true', 't', 'y', '1' | |
| Supported false values: 'no', 'false', 'f', 'n', '0' | |
| Args: | |
| v (str): String to convert. | |
| Returns: | |
| bool: Converted boolean value. | |
| Raises: | |
| argparse.ArgumentTypeError: If the value cannot be converted to boolean. | |
| """ | |
| if isinstance(v, bool): | |
| return v | |
| v_lower = v.lower() | |
| if v_lower in ('yes', 'true', 't', 'y', '1'): | |
| return True | |
| elif v_lower in ('no', 'false', 'f', 'n', '0'): | |
| return False | |
| else: | |
| raise argparse.ArgumentTypeError('Boolean value expected (True/False)') | |