Spaces:
Runtime error
Runtime error
| from smolagents import CodeAgent, HfApiModel,load_tool,tool | |
| import datetime | |
| import requests | |
| import pytz | |
| import yaml | |
| import os | |
| import asyncio | |
| import json | |
| from tools.final_answer import FinalAnswerTool | |
| from tools.web_search import DuckDuckGoSearchTool | |
| from bs4 import BeautifulSoup | |
| from duckduckgo_search import DDGS | |
| import re | |
| from typing import List, Dict, Any | |
| from Gradio_UI import GradioUI | |
| ################################################################# | |
| # Below is an example of a tool that does nothing. Amaze us with your creativity ! | |
| def my_custom_tool(arg1:str, arg2:int)-> str: #it's import to specify the return type | |
| #Keep this format for the description / args / args description but feel free to modify the tool | |
| """A tool that does nothing yet | |
| Args: | |
| arg1: the first argument | |
| arg2: the second argument | |
| """ | |
| return "What magic will you build ?" | |
| ############################################################## | |
| def visit_webpage(url: str) -> Dict[str, Any]: | |
| """Visits a webpage and extracts ingredients and instructions. | |
| Args: | |
| url: The recipe URL. | |
| Returns: | |
| A dictionary containing 'ingredients' and 'instructions', or an error message if the URL is invalid. | |
| """ | |
| try: | |
| # Validate URL format before making a request | |
| if not url.startswith("http"): | |
| return {"error": f"Invalid URL format: {url}"} | |
| response = requests.get(url, timeout=10, headers={ | |
| 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' | |
| }) | |
| response.raise_for_status() # Raise an error for 404, 403, etc. | |
| soup = BeautifulSoup(response.content, 'html.parser') | |
| # Extract ingredients | |
| ingredients = [tag.get_text(strip=True) for tag in soup.select('ul li, .ingredient')] | |
| if not ingredients: | |
| ingredients = [tag.get_text(strip=True) for tag in soup.find_all('li') if "ingredient" in tag.get_text(strip=True).lower()] | |
| # Extract instructions | |
| instructions = [tag.get_text(strip=True) for tag in soup.select('ol li, .instruction, .step')] | |
| if not instructions: | |
| instructions = [tag.get_text(strip=True) for tag in soup.find_all('p') if "step" in tag.get_text(strip=True).lower()] | |
| return { | |
| "ingredients": ingredients if ingredients else [], | |
| "instructions": instructions if instructions else [] | |
| } | |
| except requests.exceptions.HTTPError as http_err: | |
| return {"error": f"HTTP error {response.status_code}: {http_err}"} | |
| except requests.exceptions.RequestException as req_err: | |
| return {"error": f"Request failed: {req_err}"} | |
| except Exception as e: | |
| return {"error": f"Failed to scrape {url}: {str(e)}"} | |
| ############################################################### | |
| def web_search(query: str) -> str: | |
| """Searches the web using DuckDuckGo and formats output in a code block. | |
| Args: | |
| query: The search query. | |
| Returns: | |
| A string formatted as Python code. | |
| """ | |
| result = DuckDuckGoSearchTool()(query) | |
| # 🔹 Ensure the response is wrapped as Python code | |
| return f"{result}" | |
| ############################################################### | |
| def search_flights(departure: str, destination: str, date: str) -> str: | |
| """Finds flights from departure to destination on the given date using DuckDuckGo. | |
| Args: | |
| departure: The city or airport code where the flight starts. | |
| destination: The city or airport code where the flight ends. | |
| date: The departure date in YYYY-MM-DD format. | |
| Returns: | |
| A string containing flight search results. | |
| """ | |
| query = f"flights from {departure} to {destination} on {date}" | |
| search_results = DuckDuckGoSearchTool()(query) # Calls DuckDuckGo search | |
| return f"Here are some flight options:\n{search_results}" | |
| ################################################################ | |
| API_KEY = os.getenv("FREECURRENCYAPI_KEY") # 🔹 Your API key | |
| def convert_currency(amount: float, from_currency: str, to_currency: str) -> str: | |
| """Converts currency from one to another using FreeCurrencyAPI. | |
| Args: | |
| amount: The amount to convert. | |
| from_currency: The original currency (e.g., "USD"). | |
| to_currency: The target currency (e.g., "EUR"). | |
| Returns: | |
| The converted amount in the target currency. | |
| """ | |
| try: | |
| url = f"https://api.freecurrencyapi.com/v1/latest?apikey={API_KEY}&base_currency={from_currency.upper()}" | |
| response = requests.get(url).json() | |
| # ✅ Check if the API returned valid exchange rates | |
| if "data" in response and to_currency.upper() in response["data"]: | |
| rate = response["data"][to_currency.upper()] | |
| converted_amount = amount * rate | |
| return f"{amount} {from_currency.upper()} is approximately {converted_amount:.2f} {to_currency.upper()}." | |
| return f"Error: Could not find exchange rate for {to_currency.upper()}." | |
| except Exception as e: | |
| return f"Error fetching exchange rates: {str(e)}" | |
| ######################################################################## | |
| chat_history = [] # Store conversation history | |
| def chat_with_ai(message: str) -> str: | |
| """A tool that allows the AI to engage in general conversation with memory. | |
| Args: | |
| message: The user's message. | |
| """ | |
| global chat_history | |
| # Keep the last 5 messages for context | |
| if len(chat_history) > 5: | |
| chat_history.pop(0) | |
| # Add user message to history | |
| chat_history.append({"role": "user", "content": message}) | |
| # Format the history as input for the AI model | |
| formatted_history = "\n".join(f"{msg['role']}: {msg['content']}" for msg in chat_history) | |
| # ✅ Ensure AI response is handled correctly | |
| try: | |
| response = model(formatted_history) # Call model | |
| # ✅ Handle both string and dictionary responses | |
| if isinstance(response, dict): | |
| response_text = response.get("text", str(response)) # Extract text if available | |
| else: | |
| response_text = str(response) # Convert non-dict responses to string | |
| # Add AI response to history | |
| chat_history.append({"role": "assistant", "content": response_text}) | |
| return response_text | |
| except Exception as e: | |
| return f"Error processing chat: {str(e)}" | |
| ######################################################################### | |
| def get_current_time_in_timezone(timezone: str) -> str: | |
| """A tool that fetches the current local time in a specified timezone. | |
| Args: | |
| timezone: A string representing a valid timezone (e.g., 'America/New_York'). | |
| """ | |
| try: | |
| # Create timezone object | |
| tz = pytz.timezone(timezone) | |
| # Get current time in that timezone | |
| local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S") | |
| return f"The current local time in {timezone} is: {local_time}" | |
| except Exception as e: | |
| return f"Error fetching time for timezone '{timezone}': {str(e)}" | |
| ######################################################################### | |
| final_answer = FinalAnswerTool() | |
| ######################################################################## | |
| # If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder: | |
| # model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' | |
| model = HfApiModel( | |
| max_tokens=512, | |
| temperature=0.5, | |
| model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded | |
| custom_role_conversions=None, | |
| ) | |
| #deepseek-ai/DeepSeek-R1-Distill-Qwen-32B | |
| #deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B | |
| #Qwen/Qwen2.5-Coder-32B-Instruct | |
| #deepseek-ai/DeepSeek-R1-Distill-Qwen-32B | |
| #oieieio/Qwen2.5-0.5B-Instruct | |
| #oieieio/meta-llama-Llama-3.2-1B-Instruct | |
| ############################################################################### | |
| ############################################################################## | |
| # web_search settings, specific/custom | |
| hotels = web_search("Recommended hotels in Paris with pricing and location details") | |
| restaurants = web_search("Top-rated local restaurants in Paris, different budgets and cuisines") | |
| # Import tool from Hub | |
| image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True) | |
| with open("prompts.yaml", 'r') as stream: | |
| prompt_templates = yaml.safe_load(stream) | |
| agent = CodeAgent( | |
| model=model, | |
| tools=[ | |
| final_answer, | |
| get_current_time_in_timezone, | |
| my_custom_tool, | |
| chat_with_ai, # Regular chat tool | |
| search_flights, | |
| web_search, | |
| #scrape_webpage, | |
| convert_currency, | |
| #get_weather, | |
| #generate_ai_image | |
| ], | |
| max_steps=8, | |
| verbosity_level=5, | |
| prompt_templates=prompt_templates | |
| ) | |
| GradioUI(agent).launch() |