Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import spaces | |
| import os | |
| os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" | |
| import sys | |
| sys.path.insert(0, './diffusers/src') | |
| import torch | |
| import torch.nn as nn | |
| #Hack for ZeroGPU | |
| torch.jit.script = lambda f: f | |
| #### | |
| from huggingface_hub import snapshot_download | |
| from diffusers import DPMSolverMultistepScheduler | |
| from diffusers.models import ControlNetModel | |
| from transformers import CLIPVisionModelWithProjection | |
| from pipeline import OmniZeroPipeline | |
| from insightface.app import FaceAnalysis | |
| from controlnet_aux import ZoeDetector | |
| from utils import draw_kps, load_and_resize_image, align_images | |
| import cv2 | |
| import numpy as np | |
| base_model="frankjoshua/albedobaseXL_v13" | |
| snapshot_download("okaris/antelopev2", local_dir="./models/antelopev2") | |
| face_analysis = FaceAnalysis(name='antelopev2', root='./', providers=['CPUExecutionProvider']) | |
| face_analysis.prepare(ctx_id=0, det_size=(640, 640)) | |
| dtype = torch.float16 | |
| ip_adapter_plus_image_encoder = CLIPVisionModelWithProjection.from_pretrained( | |
| "h94/IP-Adapter", | |
| subfolder="models/image_encoder", | |
| torch_dtype=dtype, | |
| ).to("cuda") | |
| zoedepthnet_path = "okaris/zoe-depth-controlnet-xl" | |
| zoedepthnet = ControlNetModel.from_pretrained(zoedepthnet_path,torch_dtype=dtype).to("cuda") | |
| identitiynet_path = "okaris/face-controlnet-xl" | |
| identitynet = ControlNetModel.from_pretrained(identitiynet_path, torch_dtype=dtype).to("cuda") | |
| zoe_depth_detector = ZoeDetector.from_pretrained("lllyasviel/Annotators").to("cuda") | |
| pipeline = OmniZeroPipeline.from_pretrained( | |
| base_model, | |
| controlnet=[identitynet, zoedepthnet], | |
| torch_dtype=dtype, | |
| image_encoder=ip_adapter_plus_image_encoder, | |
| ).to("cuda") | |
| config = pipeline.scheduler.config | |
| config["timestep_spacing"] = "trailing" | |
| pipeline.scheduler = DPMSolverMultistepScheduler.from_config(config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++", final_sigmas_type="zero") | |
| pipeline.load_ip_adapter(["okaris/ip-adapter-instantid", "h94/IP-Adapter", "h94/IP-Adapter"], subfolder=[None, "sdxl_models", "sdxl_models"], weight_name=["ip-adapter-instantid.bin", "ip-adapter-plus_sdxl_vit-h.safetensors", "ip-adapter-plus_sdxl_vit-h.safetensors"]) | |
| def get_largest_face_embedding_and_kps(image, target_image=None): | |
| face_info = face_analysis.get(cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)) | |
| if len(face_info) == 0: | |
| return None, None | |
| largest_face = sorted(face_info, key=lambda x: x['bbox'][2] * x['bbox'][3], reverse=True)[0] | |
| face_embedding = torch.tensor(largest_face['embedding']).to("cuda") | |
| if target_image is None: | |
| target_image = image | |
| zeros = np.zeros((target_image.size[1], target_image.size[0], 3), dtype=np.uint8) | |
| face_kps_image = draw_kps(zeros, largest_face['kps']) | |
| return face_embedding, face_kps_image | |
| def generate( | |
| prompt="A person", | |
| composition_image="https://github.com/okaris/omni-zero/assets/1448702/2ca63443-c7f3-4ba6-95c1-2a341414865f", | |
| style_image="https://github.com/okaris/omni-zero/assets/1448702/64dc150b-f683-41b1-be23-b6a52c771584", | |
| identity_image="https://github.com/okaris/omni-zero/assets/1448702/ba193a3a-f90e-4461-848a-560454531c58", | |
| base_image="https://github.com/okaris/omni-zero/assets/1448702/2ca63443-c7f3-4ba6-95c1-2a341414865f", | |
| seed=42, | |
| negative_prompt="blurry, out of focus", | |
| guidance_scale=3.0, | |
| number_of_images=1, | |
| number_of_steps=10, | |
| base_image_strength=0.15, | |
| composition_image_strength=1.0, | |
| style_image_strength=1.0, | |
| identity_image_strength=1.0, | |
| depth_image=None, | |
| depth_image_strength=0.5, | |
| progress=gr.Progress(track_tqdm=True) | |
| ): | |
| resolution = 1024 | |
| if base_image is not None: | |
| base_image = load_and_resize_image(base_image, resolution, resolution) | |
| else: | |
| if composition_image is not None: | |
| base_image = load_and_resize_image(composition_image, resolution, resolution) | |
| else: | |
| raise ValueError("You must provide a base image or a composition image") | |
| if depth_image is None: | |
| depth_image = zoe_depth_detector(base_image, detect_resolution=resolution, image_resolution=resolution) | |
| else: | |
| depth_image = load_and_resize_image(depth_image, resolution, resolution) | |
| base_image, depth_image = align_images(base_image, depth_image) | |
| if composition_image is not None: | |
| composition_image = load_and_resize_image(composition_image, resolution, resolution) | |
| else: | |
| composition_image = base_image | |
| if style_image is not None: | |
| style_image = load_and_resize_image(style_image, resolution, resolution) | |
| else: | |
| raise ValueError("You must provide a style image") | |
| if identity_image is not None: | |
| identity_image = load_and_resize_image(identity_image, resolution, resolution) | |
| else: | |
| raise ValueError("You must provide an identity image") | |
| face_embedding_identity_image, target_kps = get_largest_face_embedding_and_kps(identity_image, base_image) | |
| if face_embedding_identity_image is None: | |
| raise ValueError("No face found in the identity image, the image might be cropped too tightly or the face is too small") | |
| face_embedding_base_image, face_kps_base_image = get_largest_face_embedding_and_kps(base_image) | |
| if face_embedding_base_image is not None: | |
| target_kps = face_kps_base_image | |
| pipeline.set_ip_adapter_scale([identity_image_strength, | |
| { | |
| "down": { "block_2": [0.0, 0.0] }, | |
| "up": { "block_0": [0.0, style_image_strength, 0.0] } | |
| }, | |
| { | |
| "down": { "block_2": [0.0, composition_image_strength] }, | |
| "up": { "block_0": [0.0, 0.0, 0.0] } | |
| } | |
| ]) | |
| generator = torch.Generator(device="cpu").manual_seed(seed) | |
| images = pipeline( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| guidance_scale=guidance_scale, | |
| ip_adapter_image=[face_embedding_identity_image, style_image, composition_image], | |
| image=base_image, | |
| control_image=[target_kps, depth_image], | |
| controlnet_conditioning_scale=[identity_image_strength, depth_image_strength], | |
| identity_control_indices=[(0,0)], | |
| num_inference_steps=number_of_steps, | |
| num_images_per_prompt=number_of_images, | |
| strength=(1-base_image_strength), | |
| generator=generator, | |
| seed=seed, | |
| ).images | |
| return images | |
| #Move the components in the example fields outside so they are available when gr.Examples is instantiated | |
| buy_me_a_coffee_button = """ | |
| [](https://www.buymeacoffee.com/vk654cf2pv8) | |
| """ | |
| with gr.Blocks() as demo: | |
| gr.Markdown("<h1 style='text-align: center'>Omni Zero</h1>") | |
| gr.Markdown("<h4 style='text-align: center'>A diffusion pipeline for zero-shot stylized portrait creation [<a href='https://github.com/okaris/omni-zero' target='_blank'>GitHub</a>], [<a href='https://styleof.com/s/remix-yourself' target='_blank'>StyleOf Remix Yourself</a>]</h4>") | |
| gr.Markdown(buy_me_a_coffee_button) | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| prompt = gr.Textbox(label="Prompt", value="A person") | |
| with gr.Row(): | |
| negative_prompt = gr.Textbox(label="Negative Prompt", value="blurry, out of focus") | |
| with gr.Row(): | |
| with gr.Column(min_width=140): | |
| with gr.Row(): | |
| composition_image = gr.Image(label="Composition") | |
| with gr.Row(): | |
| composition_image_strength = gr.Slider(label="Strength",step=0.01, minimum=0.0, maximum=1.0, value=1.0) | |
| #with gr.Row(): | |
| with gr.Column(min_width=140): | |
| with gr.Row(): | |
| style_image = gr.Image(label="Style Image") | |
| with gr.Row(): | |
| style_image_strength = gr.Slider(label="Strength",step=0.01, minimum=0.0, maximum=1.0, value=1.0) | |
| with gr.Column(min_width=140): | |
| with gr.Row(): | |
| identity_image = gr.Image(label="Identity Image") | |
| with gr.Row(): | |
| identity_image_strength = gr.Slider(label="Strenght",step=0.01, minimum=0.0, maximum=1.0, value=1.0) | |
| with gr.Accordion("Advanced options", open=False): | |
| with gr.Row(): | |
| with gr.Column(min_width=140): | |
| with gr.Row(): | |
| base_image = gr.Image(label="Base Image") | |
| with gr.Row(): | |
| base_image_strength = gr.Slider(label="Strength",step=0.01, minimum=0.0, maximum=1.0, value=0.15, min_width=120) | |
| # with gr.Column(min_width=140): | |
| # with gr.Row(): | |
| # depth_image = gr.Image(label="depth_image", value=None) | |
| # with gr.Row(): | |
| # depth_image_strength = gr.Slider(label="depth_image_strength",step=0.01, minimum=0.0, maximum=1.0, value=0.5) | |
| with gr.Row(): | |
| seed = gr.Slider(label="Seed",step=1, minimum=0, maximum=10000000, value=42) | |
| number_of_images = gr.Slider(label="Number of Outputs",step=1, minimum=1, maximum=4, value=1) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider(label="Guidance Scale",step=0.1, minimum=0.0, maximum=14.0, value=3.0) | |
| number_of_steps = gr.Slider(label="Number of Steps",step=1, minimum=1, maximum=50, value=10) | |
| with gr.Column(): | |
| with gr.Row(): | |
| out = gr.Gallery(label="Output(s)") | |
| with gr.Row(): | |
| # clear = gr.Button("Clear") | |
| submit = gr.Button("Generate") | |
| submit.click(generate, inputs=[ | |
| prompt, | |
| composition_image, | |
| style_image, | |
| identity_image, | |
| base_image, | |
| seed, | |
| negative_prompt, | |
| guidance_scale, | |
| number_of_images, | |
| number_of_steps, | |
| base_image_strength, | |
| composition_image_strength, | |
| style_image_strength, | |
| identity_image_strength, | |
| ], | |
| outputs=[out] | |
| ) | |
| # clear.click(lambda: None, None, chatbot, queue=False) | |
| gr.Examples( | |
| examples=[["A person", "https://github.com/okaris/omni-zero/assets/1448702/2ca63443-c7f3-4ba6-95c1-2a341414865f", "https://github.com/okaris/omni-zero/assets/1448702/64dc150b-f683-41b1-be23-b6a52c771584", "https://github.com/okaris/omni-zero/assets/1448702/ba193a3a-f90e-4461-848a-560454531c58"]], | |
| inputs=[prompt, composition_image, style_image, identity_image], | |
| outputs=[out], | |
| fn=generate, | |
| cache_examples="lazy", | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |