Update app.py
Browse files
app.py
CHANGED
|
@@ -3,7 +3,6 @@ import torch
|
|
| 3 |
import gradio as gr
|
| 4 |
from huggingface_hub import login
|
| 5 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 6 |
-
from peft import PeftModel
|
| 7 |
|
| 8 |
# === STEP 1: Authenticate with Hugging Face ===
|
| 9 |
# Make sure you set your HF token as an environment variable or paste it here temporarily
|
|
@@ -13,32 +12,41 @@ login(token="hf_" + hf_token)
|
|
| 13 |
|
| 14 |
# === STEP 2: Load base and adapter models ===
|
| 15 |
base_model = "meta-llama/Llama-2-7b-chat-hf"
|
| 16 |
-
adapter_model = "
|
| 17 |
|
| 18 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
load_in_8bit=True,
|
| 27 |
device_map="auto",
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
use_auth_token="hf_" +hf_token
|
| 31 |
)
|
| 32 |
|
| 33 |
-
|
| 34 |
-
model = PeftModel.from_pretrained(base, adapter_model)
|
| 35 |
-
|
| 36 |
# === STEP 3: Define generation function ===
|
| 37 |
def generate(prompt):
|
| 38 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 41 |
|
| 42 |
# === STEP 4: Launch Gradio app ===
|
| 43 |
-
demo = gr.Interface(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
demo.launch()
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
from huggingface_hub import login
|
| 5 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
| 6 |
|
| 7 |
# === STEP 1: Authenticate with Hugging Face ===
|
| 8 |
# Make sure you set your HF token as an environment variable or paste it here temporarily
|
|
|
|
| 12 |
|
| 13 |
# === STEP 2: Load base and adapter models ===
|
| 14 |
base_model = "meta-llama/Llama-2-7b-chat-hf"
|
| 15 |
+
adapter_model = "zimble-llama2-finetunedhybride"
|
| 16 |
|
| 17 |
+
tokenizer = AutoTokenizer.from_pretrained(merged_model_repo, use_auth_token=hf_token)
|
| 18 |
|
| 19 |
+
# Enable memory-efficient loading if needed
|
| 20 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 21 |
|
| 22 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 23 |
+
merged_model_repo,
|
| 24 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
|
|
|
| 25 |
device_map="auto",
|
| 26 |
+
low_cpu_mem_usage=True,
|
| 27 |
+
use_auth_token=hf_token
|
|
|
|
| 28 |
)
|
| 29 |
|
|
|
|
|
|
|
|
|
|
| 30 |
# === STEP 3: Define generation function ===
|
| 31 |
def generate(prompt):
|
| 32 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 33 |
+
with torch.no_grad():
|
| 34 |
+
outputs = model.generate(
|
| 35 |
+
**inputs,
|
| 36 |
+
max_new_tokens=250,
|
| 37 |
+
temperature=0.7,
|
| 38 |
+
top_p=0.9,
|
| 39 |
+
do_sample=True,
|
| 40 |
+
)
|
| 41 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 42 |
|
| 43 |
# === STEP 4: Launch Gradio app ===
|
| 44 |
+
demo = gr.Interface(
|
| 45 |
+
fn=generate,
|
| 46 |
+
inputs=gr.Textbox(label="Enter your prompt", lines=4, placeholder="Type something..."),
|
| 47 |
+
outputs=gr.Textbox(label="Model output"),
|
| 48 |
+
title="🦙 Zimble LLaMA 2 (Merged)",
|
| 49 |
+
description="Fine-tuned and merged version of LLaMA 2 running on Hugging Face Space"
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
demo.launch()
|