Update app.py
Browse files
app.py
CHANGED
|
@@ -1,24 +1,37 @@
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
from peft import PeftModel
|
| 4 |
-
import torch
|
| 5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
base_model = "meta-llama/Llama-2-7b-chat-hf"
|
| 7 |
adapter_model = "olacode55/zimble-llama2"
|
| 8 |
|
| 9 |
tokenizer = AutoTokenizer.from_pretrained(base_model)
|
|
|
|
| 10 |
base = AutoModelForCausalLM.from_pretrained(
|
| 11 |
base_model,
|
| 12 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 13 |
-
device_map="auto"
|
|
|
|
| 14 |
)
|
| 15 |
|
| 16 |
model = PeftModel.from_pretrained(base, adapter_model)
|
| 17 |
|
|
|
|
| 18 |
def generate(prompt):
|
| 19 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 20 |
outputs = model.generate(**inputs, max_new_tokens=200, temperature=0.7)
|
| 21 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 22 |
|
|
|
|
| 23 |
demo = gr.Interface(fn=generate, inputs="text", outputs="text", title="Zimble LLaMA 2 Fine-Tuned")
|
| 24 |
demo.launch()
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
import gradio as gr
|
| 4 |
+
from huggingface_hub import login
|
| 5 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 6 |
from peft import PeftModel
|
|
|
|
| 7 |
|
| 8 |
+
# === STEP 1: Authenticate with Hugging Face ===
|
| 9 |
+
# Make sure you set your HF token as an environment variable or paste it here temporarily
|
| 10 |
+
# For security, prefer environment variable (recommended)
|
| 11 |
+
os.environ["HF_TOKEN"] = "boewmwFyewoJuARzTMoCNFLVyYNQSMDUvx"
|
| 12 |
+
login(token=os.getenv("HF_TOKEN"))
|
| 13 |
+
|
| 14 |
+
# === STEP 2: Load base and adapter models ===
|
| 15 |
base_model = "meta-llama/Llama-2-7b-chat-hf"
|
| 16 |
adapter_model = "olacode55/zimble-llama2"
|
| 17 |
|
| 18 |
tokenizer = AutoTokenizer.from_pretrained(base_model)
|
| 19 |
+
|
| 20 |
base = AutoModelForCausalLM.from_pretrained(
|
| 21 |
base_model,
|
| 22 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 23 |
+
device_map="auto",
|
| 24 |
+
use_auth_token="hf_" +os.getenv("HF_TOKEN") # ensure it uses your auth
|
| 25 |
)
|
| 26 |
|
| 27 |
model = PeftModel.from_pretrained(base, adapter_model)
|
| 28 |
|
| 29 |
+
# === STEP 3: Define generation function ===
|
| 30 |
def generate(prompt):
|
| 31 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 32 |
outputs = model.generate(**inputs, max_new_tokens=200, temperature=0.7)
|
| 33 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 34 |
|
| 35 |
+
# === STEP 4: Launch Gradio app ===
|
| 36 |
demo = gr.Interface(fn=generate, inputs="text", outputs="text", title="Zimble LLaMA 2 Fine-Tuned")
|
| 37 |
demo.launch()
|