IDX-Chronos / utils.py
omniverse1's picture
Update utils.py
7f84e9b verified
raw
history blame
13.1 kB
import yfinance as yf
import pandas as pd
import numpy as np
import torch
from datetime import datetime, timedelta
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import spaces
def get_indonesian_stocks():
return {
"BBCA.JK": "Bank Central Asia",
"BBRI.JK": "Bank BRI",
"BBNI.JK": "Bank BNI",
"BMRI.JK": "Bank Mandiri",
"TLKM.JK": "Telkom Indonesia",
"UNVR.JK": "Unilever Indonesia",
"ASII.JK": "Astra International",
"INDF.JK": "Indofood Sukses Makmur",
"KLBF.JK": "Kalbe Farma",
"HMSP.JK": "HM Sampoerna",
"GGRM.JK": "Gudang Garam",
"ADRO.JK": "Adaro Energy",
"PGAS.JK": "Perusahaan Gas Negara",
"JSMR.JK": "Jasa Marga",
"WIKA.JK": "Wijaya Karya",
"PTBA.JK": "Tambang Batubara Bukit Asam",
"ANTM.JK": "Aneka Tambang",
"SMGR.JK": "Semen Indonesia",
"INTP.JK": "Indocement Tunggal Prakasa",
"ITMG.JK": "Indo Tambangraya Megah"
}
def calculate_technical_indicators(data):
indicators = {}
def calculate_rsi(prices, period=14):
delta = prices.diff()
gain = (delta.where(delta > 0, 0)).rolling(window=period).mean()
loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean()
rs = gain / loss
rsi = 100 - (100 / (1 + rs))
return rsi
indicators['rsi'] = {'current': calculate_rsi(data['Close']).iloc[-1], 'values': calculate_rsi(data['Close'])}
def calculate_macd(prices, fast=12, slow=26, signal=9):
exp1 = prices.ewm(span=fast).mean()
exp2 = prices.ewm(span=slow).mean()
macd = exp1 - exp2
signal_line = macd.ewm(span=signal).mean()
histogram = macd - signal_line
return macd, signal_line, histogram
macd, signal_line, histogram = calculate_macd(data['Close'])
indicators['macd'] = {'macd': macd.iloc[-1], 'signal': signal_line.iloc[-1], 'histogram': histogram.iloc[-1], 'signal_text': 'BUY' if histogram.iloc[-1] > 0 else 'SELL', 'macd_values': macd, 'signal_values': signal_line}
def calculate_bollinger_bands(prices, period=20, std_dev=2):
sma = prices.rolling(window=period).mean()
std = prices.rolling(window=period).std()
upper_band = sma + (std * std_dev)
lower_band = sma - (std * std_dev)
return upper_band, sma, lower_band
upper, middle, lower = calculate_bollinger_bands(data['Close'])
current_price = data['Close'].iloc[-1]
bb_position = (current_price - lower.iloc[-1]) / (upper.iloc[-1] - lower.iloc[-1])
indicators['bollinger'] = {
'upper': upper.iloc[-1],
'middle': middle.iloc[-1],
'lower': lower.iloc[-1],
'upper_values': upper,
'middle_values': middle,
'lower_values': lower,
'position': 'UPPER' if bb_position > 0.8 else 'LOWER' if bb_position < 0.2 else 'MIDDLE'
}
sma_20_series = data['Close'].rolling(20).mean()
sma_50_series = data['Close'].rolling(50).mean()
indicators['moving_averages'] = {'sma_20': sma_20_series.iloc[-1], 'sma_50': sma_50_series.iloc[-1], 'sma_200': data['Close'].rolling(200).mean().iloc[-1], 'ema_12': data['Close'].ewm(span=12).mean().iloc[-1], 'ema_26': data['Close'].ewm(span=26).mean().iloc[-1], 'sma_20_values': sma_20_series, 'sma_50_values': sma_50_series}
indicators['volume'] = {'current': data['Volume'].iloc[-1], 'avg_20': data['Volume'].rolling(20).mean().iloc[-1], 'ratio': data['Volume'].iloc[-1] / data['Volume'].rolling(20).mean().iloc[-1]}
return indicators
def generate_trading_signals(data, indicators):
signals = {}
current_price = data['Close'].iloc[-1]
buy_signals = 0
sell_signals = 0
signal_details = []
rsi = indicators['rsi']['current']
if rsi < 30:
buy_signals += 1
signal_details.append(f"✅ RSI ({rsi:.1f}) - Oversold - BUY signal")
elif rsi > 70:
sell_signals += 1
signal_details.append(f"❌ RSI ({rsi:.1f}) - Overbought - SELL signal")
else:
signal_details.append(f"⚪ RSI ({rsi:.1f}) - Neutral")
macd_hist = indicators['macd']['histogram']
if macd_hist > 0:
buy_signals += 1
signal_details.append(f"✅ MACD Histogram ({macd_hist:.4f}) - Positive - BUY signal")
else:
sell_signals += 1
signal_details.append(f"❌ MACD Histogram ({macd_hist:.4f}) - Negative - SELL signal")
bb_position = indicators['bollinger']['position']
if bb_position == 'LOWER':
buy_signals += 1
signal_details.append(f"✅ Bollinger Bands - Near lower band - BUY signal")
elif bb_position == 'UPPER':
sell_signals += 1
signal_details.append(f"❌ Bollinger Bands - Near upper band - SELL signal")
else:
signal_details.append("⚪ Bollinger Bands - Middle position")
sma_20 = indicators['moving_averages']['sma_20']
sma_50 = indicators['moving_averages']['sma_50']
if current_price > sma_20 > sma_50:
buy_signals += 1
signal_details.append(f"✅ Price above MA(20,50) - Bullish - BUY signal")
elif current_price < sma_20 < sma_50:
sell_signals += 1
signal_details.append(f"❌ Price below MA(20,50) - Bearish - SELL signal")
else:
signal_details.append("⚪ Moving Averages - Mixed signals")
volume_ratio = indicators['volume']['ratio']
if volume_ratio > 1.5:
buy_signals += 0.5
signal_details.append(f"✅ High volume ({volume_ratio:.1f}x avg) - Strengthens BUY signal")
elif volume_ratio < 0.5:
sell_signals += 0.5
signal_details.append(f"❌ Low volume ({volume_ratio:.1f}x avg) - Weakens SELL signal")
else:
signal_details.append(f"⚪ Normal volume ({volume_ratio:.1f}x avg)")
total_signals = buy_signals + sell_signals
signal_strength = (buy_signals / max(total_signals, 1)) * 100
overall_signal = "BUY" if buy_signals > sell_signals else "SELL" if sell_signals > buy_signals else "HOLD"
recent_high = data['High'].tail(20).max()
recent_low = data['Low'].tail(20).min()
signals = {'overall': overall_signal, 'strength': signal_strength, 'details': '\n'.join(signal_details), 'support': recent_low, 'resistance': recent_high, 'stop_loss': recent_low * 0.95 if overall_signal == "BUY" else recent_high * 1.05}
return signals
def get_fundamental_data(stock):
try:
info = stock.info
history = stock.history(period="1d")
fundamental_info = {'name': info.get('longName', 'N/A'), 'current_price': history['Close'].iloc[-1] if not history.empty else 0, 'market_cap': info.get('marketCap', 0), 'pe_ratio': info.get('forwardPE', 0), 'dividend_yield': info.get('dividendYield', 0) * 100 if info.get('dividendYield') else 0, 'volume': history['Volume'].iloc[-1] if not history.empty else 0, 'info': f"Sector: {info.get('sector', 'N/A')}\nIndustry: {info.get('industry', 'N/A')}\nMarket Cap: {info.get('marketCap', 0)}\n52 Week High: {info.get('fiftyTwoWeekHigh', 'N/A')}\n52 Week Low: {info.get('fiftyTwoWeekLow', 'N/A')}\nBeta: {info.get('beta', 'N/A')}\nEPS: {info.get('forwardEps', 'N/A')}\nBook Value: {info.get('bookValue', 'N/A')}\nPrice to Book: {info.get('priceToBook', 'N/A')}"}
return fundamental_info
except:
return {'name': 'N/A', 'current_price': 0, 'market_cap': 0, 'pe_ratio': 0, 'dividend_yield': 0, 'volume': 0, 'info': 'Unable to fetch fundamental data'}
def format_large_number(num):
if num >= 1e12:
return f"{num/1e12:.2f}T"
elif num >= 1e9:
return f"{num/1e9:.2f}B"
elif num >= 1e6:
return f"{num/1e6:.2f}M"
elif num >= 1e3:
return f"{num/1e3:.2f}K"
else:
return f"{num:.2f}"
@spaces.GPU(duration=120)
def predict_prices(data, model=None, tokenizer=None, prediction_days=30):
try:
prices = data['Close'].values.astype(np.float32)
from chronos import BaseChronosPipeline
pipeline = BaseChronosPipeline.from_pretrained("amazon/chronos-bolt-base", device_map="auto")
with torch.no_grad():
forecast = pipeline.predict(context=torch.tensor(prices), prediction_length=prediction_days)
forecast_np = forecast.squeeze().cpu().numpy() if isinstance(forecast, torch.Tensor) else np.array(forecast)
if forecast_np.ndim > 1:
mean_forecast = forecast_np.mean(axis=tuple(range(forecast_np.ndim - 1)))
else:
mean_forecast = forecast_np
last_price = prices[-1]
predicted_high = float(np.max(mean_forecast))
predicted_low = float(np.min(mean_forecast))
predicted_mean = float(np.mean(mean_forecast))
change_pct = ((predicted_mean - last_price) / last_price) * 100 if last_price != 0 else 0
return {'values': mean_forecast, 'dates': pd.date_range(start=data.index[-1] + timedelta(days=1), periods=len(mean_forecast), freq='D'), 'high_30d': predicted_high, 'low_30d': predicted_low, 'mean_30d': predicted_mean, 'change_pct': change_pct, 'summary': f"AI Model: Amazon Chronos-Bolt (Base)\nPredicted High: {predicted_high:.2f}\nPredicted Low: {predicted_low:.2f}\nExpected Change: {change_pct:.2f}%"}
except Exception as e:
print(f"Error in prediction: {e}")
return {'values': [], 'dates': [], 'high_30d': 0, 'low_30d': 0, 'mean_30d': 0, 'change_pct': 0, 'summary': f'Model error: {e}'}
def create_prediction_chart(data, predictions):
if not len(predictions['values']):
return go.Figure()
fig = go.Figure()
fig.add_trace(go.Scatter(x=data.index[-60:], y=data['Close'].values[-60:], name='Historical Price', line=dict(color='blue', width=2)))
fig.add_trace(go.Scatter(x=predictions['dates'], y=predictions['values'], name='AI Prediction', line=dict(color='red', width=2, dash='dash')))
pred_std = np.std(predictions['values'])
upper_band = predictions['values'] + (pred_std * 1.96)
lower_band = predictions['values'] - (pred_std * 1.96)
fig.add_trace(go.Scatter(x=predictions['dates'], y=upper_band, name='Upper Band', line=dict(color='lightcoral', width=1)))
fig.add_trace(go.Scatter(x=predictions['dates'], y=lower_band, name='Lower Band', line=dict(color='lightcoral', width=1), fill='tonexty', fillcolor='rgba(255,182,193,0.2)'))
fig.update_layout(title=f'Price Prediction - Next {len(predictions["dates"])} Days', xaxis_title='Date', yaxis_title='Price (IDR)', hovermode='x unified', height=500)
return fig
def create_price_chart(data, indicators):
fig = make_subplots(rows=3, cols=1, shared_xaxes=True, vertical_spacing=0.05)
fig.add_trace(go.Candlestick(x=data.index, open=data['Open'], high=data['High'], low=data['Low'], close=data['Close'], name='Price'), row=1, col=1)
fig.add_trace(go.Scatter(x=data.index, y=indicators['moving_averages']['sma_20_values'], name='SMA 20', line=dict(color='orange')), row=1, col=1)
fig.add_trace(go.Scatter(x=data.index, y=indicators['moving_averages']['sma_50_values'], name='SMA 50', line=dict(color='blue')), row=1, col=1)
fig.add_trace(go.Scatter(x=data.index, y=indicators['rsi']['values'], name='RSI', line=dict(color='purple')), row=2, col=1)
fig.add_trace(go.Scatter(x=data.index, y=indicators['macd']['macd_values'], name='MACD', line=dict(color='blue')), row=3, col=1)
fig.add_trace(go.Scatter(x=data.index, y=indicators['macd']['signal_values'], name='Signal', line=dict(color='red')), row=3, col=1)
fig.update_layout(title='Technical Analysis Dashboard', height=900, showlegend=True)
return fig
def create_technical_chart(data, indicators):
fig = make_subplots(rows=2, cols=2, subplot_titles=('Bollinger Bands', 'Volume', 'Price vs MA', 'RSI Analysis'))
fig.add_trace(go.Scatter(x=data.index, y=data['Close'], name='Price', line=dict(color='black')), row=1, col=1)
fig.add_trace(go.Scatter(x=data.index, y=indicators['bollinger']['upper_values'], name='Upper Band', line=dict(color='red')), row=1, col=1)
fig.add_trace(go.Scatter(x=data.index, y=indicators['bollinger']['lower_values'], name='Lower Band', line=dict(color='green'), fill='tonexty', fillcolor='rgba(0,255,0,0.1)'), row=1, col=1)
fig.add_trace(go.Bar(x=data.index, y=data['Volume'], name='Volume', marker_color='lightblue'), row=1, col=2)
fig.add_trace(go.Scatter(x=data.index, y=data['Close'], name='Price', line=dict(color='gray')), row=2, col=1)
fig.add_trace(go.Scatter(x=data.index, y=indicators['moving_averages']['sma_20_values'], name='SMA 20', line=dict(color='orange', dash='dash')), row=2, col=1)
fig.add_trace(go.Scatter(x=data.index, y=indicators['moving_averages']['sma_50_values'], name='SMA 50', line=dict(color='blue', dash='dash')), row=2, col=1)
fig.add_trace(go.Scatter(x=data.index, y=indicators['rsi']['values'], name='RSI', line=dict(color='purple')), row=2, col=2)
fig.add_hline(y=70, line_dash="dash", line_color="red", row=2, col=2)
fig.add_hline(y=30, line_dash="dash", line_color="green", row=2, col=2)
fig.update_layout(title='Technical Indicators Overview', height=800, showlegend=False, hovermode='x unified')
return fig