import yfinance as yf import pandas as pd import numpy as np import torch from datetime import datetime, timedelta import plotly.graph_objects as go from plotly.subplots import make_subplots import spaces import gc import time import random from chronos import ChronosPipeline from scipy.stats import skew, kurtosis from typing import Dict, Union, List # Global variable for model pipeline pipeline = None # --- ADVANCED UTILITIES & CONFIG --- # Sumber data Covariate eksternal COVARIATE_SOURCES = { 'market_indices': ['^GSPC', '^DJI', '^IXIC', '^VIX'], 'commodities': ['GC=F', 'CL=F'], } def clear_gpu_memory(): """Membersihkan cache memori GPU""" if torch.cuda.is_available(): torch.cuda.empty_cache() gc.collect() @spaces.GPU() def load_pipeline(): """ Memuat model Chronos-2 dengan konfigurasi GPU canggih. Menggunakan device_map="cuda" dan torch_dtype=torch.float16. """ global pipeline try: model_name = "amazon/chronos-2" if pipeline is None: clear_gpu_memory() print(f"Loading Chronos model: {model_name}...") # FIX 1: Menyederhanakan argumen untuk menghindari error 'input_patch_size' pipeline = ChronosPipeline.from_pretrained( model_name, device_map="cuda", torch_dtype=torch.float16, # Menghapus argumen yang mungkin memicu error konfigurasi ) pipeline.model = pipeline.model.eval() for param in pipeline.model.parameters(): param.requires_grad = False print(f"Chronos model {model_name} loaded successfully on CUDA") return pipeline except Exception as e: # Menampilkan error yang lebih spesifik print(f"Error loading pipeline on CUDA, trying CPU: {str(e)}") try: # Fallback ke CPU pipeline = ChronosPipeline.from_pretrained(model_name, device_map="cpu") pipeline.model = pipeline.model.eval() print(f"Chronos model {model_name} loaded successfully on CPU (performance degraded)") return pipeline except Exception as cpu_e: raise RuntimeError(f"Failed to load model {model_name} on both CUDA and CPU: {str(cpu_e)}") # ... (Fungsi-fungsi lain: retry_yfinance_request, fetch_enhanced_covariates, calculate_advanced_risk_metrics) def retry_yfinance_request(func, max_retries=3, initial_delay=1): """Mekanisme retry untuk permintaan yfinance dengan backoff eksponensial.""" for attempt in range(max_retries): try: result = func() if result is not None and not result.empty: return result if attempt == max_retries - 1: return None delay = min(8.0, initial_delay * (2 ** attempt) + random.uniform(0, 1)) time.sleep(delay) except Exception: if attempt == max_retries - 1: return None delay = min(8.0, initial_delay * (2 ** attempt) + random.uniform(0, 1)) time.sleep(delay) def fetch_enhanced_covariates(data: pd.DataFrame) -> pd.DataFrame: """Mengambil data covariate (Indeks Pasar) dan menggabungkannya.""" start_date = data.index.min().strftime('%Y-%m-%d') end_date = data.index.max().strftime('%Y-%m-%d') date_range = pd.date_range(start=start_date, end=end_date, freq='D') # 1. Reindex data asli ke range hari yang kontinu data_full = data.reindex(date_range) data_full['Close'] = data_full['Close'].fillna(method='ffill') data_full['Volume'] = data_full['Volume'].fillna(0) covariate_df = pd.DataFrame(index=date_range) # 2. Ambil data dari semua sumber covariate eksternal for source_key, symbols in COVARIATE_SOURCES.items(): for symbol in symbols: def fetch_covariate(): return yf.download(symbol, start=start_date, end=end_date, interval="1d", progress=False) cov_data = retry_yfinance_request(fetch_covariate) if cov_data is not None and not cov_data.empty: cov_data = cov_data['Close'].rename(f'cov_{symbol.replace("^", "_").replace("=", "_")}') cov_data = cov_data.reindex(date_range) covariate_df = covariate_df.merge(cov_data, left_index=True, right_index=True, how='left') # 3. Gabungkan dan imputasi final_df = data_full.merge(covariate_df, left_index=True, right_index=True, how='left') cov_cols = [col for col in final_df.columns if col.startswith('cov_') or col == 'Volume'] # Imputasi Covariates: Forward fill untuk harga/indeks, 0 untuk Volume final_df['Volume'] = final_df['Volume'].fillna(0) final_df[[col for col in cov_cols if col != 'Volume']] = final_df[[col for col in cov_cols if col != 'Volume']].fillna(method='ffill') final_df = final_df.dropna(subset=['Close'], how='all') # Ganti nama kolom sesuai format Chronos return final_df.rename(columns={'Close': 'target', 'Volume': 'cov_volume'}) def calculate_advanced_risk_metrics(df: pd.DataFrame, risk_free_rate: float = 0.05) -> Dict[str, Union[float, str]]: """Menghitung metrik risiko dan performa lanjutan (Sharpe Ratio, VaR, CVaR, Max Drawdown).""" if df.empty or 'Close' not in df.columns: return {"error": "Data historis tidak valid untuk perhitungan risiko."} try: df['Returns'] = df['Close'].pct_change() returns = df['Returns'].dropna() if returns.empty: return {"error": "Return historis tidak tersedia."} days_per_year = 252 annual_return = returns.mean() * days_per_year annual_vol = returns.std() * np.sqrt(days_per_year) sharpe_ratio = (annual_return - risk_free_rate) / annual_vol if annual_vol != 0 else 0 var_95 = np.percentile(returns, 5) * -1 cvar_95 = returns[returns < -var_95].mean() * -1 cumulative_returns = (1 + returns).cumprod() peak = cumulative_returns.expanding(min_periods=1).max() drawdown = (cumulative_returns / peak) - 1 max_drawdown = drawdown.min() skewness = skew(returns) kurtosis_val = kurtosis(returns) return { "Annual_Return": f"{annual_return*100:.2f}%", "Annual_Volatility": f"{annual_vol*100:.2f}%", "Sharpe_Ratio": f"{sharpe_ratio:.2f}", "Max_Drawdown": f"{max_drawdown*100:.2f}%", "VaR_95_Daily_Loss": f"{var_95*100:.2f}%", "CVaR_95_Avg_Loss": f"{cvar_95*100:.2f}%", "Skewness": f"{skewness:.2f}", "Kurtosis": f"{kurtosis_val:.2f}", } except Exception as e: return {"error": f"Risk calculation failed: {str(e)}"} def predict_technical_indicators_future(data: pd.DataFrame, price_prediction: np.ndarray) -> Dict[str, np.ndarray]: """Memprediksi MACD dan Bollinger Bands di masa depan berdasarkan prediksi harga.""" predictions = {} # Pastikan price_prediction tidak kosong sebelum diolah if price_prediction.size == 0: return {"MACD_Future": np.array([]), "MACD_Signal_Future": np.array([]), "BB_Upper_Future": np.array([]), "BB_Lower_Future": np.array([])} full_price_series = np.concatenate([data['Close'].values, price_prediction]) full_price_series = pd.Series(full_price_series) # MACD dan Signal Line Future def calculate_ema(prices, span): return prices.ewm(span=span, adjust=False).mean() ema_12_full = calculate_ema(full_price_series, 12) ema_26_full = calculate_ema(full_price_series, 26) macd_full = ema_12_full - ema_26_full macd_signal_full = calculate_ema(macd_full, 9) predictions['MACD_Future'] = macd_full.iloc[-len(price_prediction):].values predictions['MACD_Signal_Future'] = macd_signal_full.iloc[-len(price_prediction):].values # Bollinger Bands Future period = 20 std_dev = 2 middle_band_full = full_price_series.rolling(window=period).mean() std_full = full_price_series.rolling(window=period).std() upper_band_full = middle_band_full + (std_full * std_dev) lower_band_full = middle_band_full - (std_full * std_dev) predictions['BB_Upper_Future'] = upper_band_full.iloc[-len(price_prediction):].values predictions['BB_Lower_Future'] = lower_band_full.iloc[-len(price_prediction):].values return predictions @spaces.GPU(duration=120) def predict_prices(data, prediction_days=30): """Fungsi prediksi utama menggunakan Chronos-2 dengan enhanced covariates.""" # Default return structure for errors (Menggunakan np.array([]) yang aman) empty_result = { 'values': np.array([]), 'dates': pd.Series([], dtype='datetime64[ns]'), 'high_30d': 0, 'low_30d': 0, 'mean_30d': 0, 'change_pct': 0, 'q01': np.array([]), 'q09': np.array([]), 'future_macd': np.array([]), 'future_macd_signal': np.array([]), 'future_bb_upper': np.array([]), 'future_bb_lower': np.array([]), 'summary': 'Prediction failed due to model or data error.' } try: # 1. Load Model (Akan memanggil load_pipeline yang sudah diperbaiki) pipeline = load_pipeline() data_original = data.copy() # 2. Enhanced Data Preprocessing & Covariate data_enhanced = fetch_enhanced_covariates(data_original) context_df = data_enhanced.reset_index() context_df.columns = ['timestamp'] + [col for col in context_df.columns[1:]] context_df['id'] = 'stock_price' all_covariates = [col for col in context_df.columns if col not in ['timestamp', 'id', 'target']] # 3. Model Prediction with torch.no_grad(): pred_df = pipeline.predict_df( context_df, prediction_length=prediction_days, id_column="id", timestamp_column="timestamp", target="target", covariates=all_covariates, quantile_levels=[0.1, 0.5, 0.9] ) required_cols = ['target_0.1', 'target_0.5', 'target_0.9'] if pred_df.empty or not all(col in pred_df.columns for col in required_cols): missing = [col for col in required_cols if col not in pred_df.columns] raise RuntimeError(f"Prediction output incomplete. Missing: {missing}") q05_forecast = pred_df['target_0.5'].values.astype(np.float32) q09_forecast = pred_df['target_0.9'].values.astype(np.float32) q01_forecast = pred_df['target_0.1'].values.astype(np.float32) predicted_dates = pred_df['timestamp'] last_price = data_original['Close'].iloc[-1] # Proyeksi Indikator Teknikal Masa Depan future_indicators = predict_technical_indicators_future(data_original, q05_forecast) predicted_high = float(np.max(q05_forecast)) predicted_low = float(np.min(q05_forecast)) predicted_mean = float(np.mean(q05_forecast)) change_pct = ((predicted_mean - last_price) / last_price) * 100 if last_price != 0 else 0 # Menambahkan data teknikal prediksi ke hasil return { 'values': q05_forecast, 'dates': predicted_dates, 'high_30d': predicted_high, 'low_30d': predicted_low, 'mean_30d': predicted_mean, 'change_pct': change_pct, 'q01': q01_forecast, 'q09': q09_forecast, 'future_macd': future_indicators.get('MACD_Future', np.array([])), 'future_macd_signal': future_indicators.get('MACD_Signal_Future', np.array([])), 'future_bb_upper': future_indicators.get('BB_Upper_Future', np.array([])), 'future_bb_lower': future_indicators.get('BB_Lower_Future', np.array([])), 'summary': f"AI Model: Amazon Chronos-2 (Enhanced Covariates: {len(all_covariates)} features)\nExpected High: {predicted_high:.2f}\nExpected Low: {predicted_low:.2f}\nExpected Change: {change_pct:.2f}%" } except Exception as e: error_message = f'Model prediction failed: {e}' print(f"Error in prediction: {e}") empty_result['summary'] = error_message return empty_result # Memperbarui fungsi create_prediction_chart untuk menampilkan Quantile Bands (q01, q09) dan Future BB def create_prediction_chart(data, predictions): # Cek yang lebih aman untuk array kosong if not predictions['values'].size or not predictions['q01'].size: return go.Figure().update_layout(title="Prediction Failed: No Data Available") fig = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.05, row_heights=[0.7, 0.3], subplot_titles=('Price Forecast & Confidence Band', 'MACD Forecast')) # 1. Price Forecast (Row 1) fig.add_trace(go.Scatter(x=data.index, y=data['Close'].values, name='Historical Price', line=dict(color='blue', width=2)), row=1, col=1) # Upper/Lower Quantile Band (Confidence) fig.add_trace(go.Scatter(x=predictions['dates'], y=predictions['q09'], name='90% Upper Bound (Q0.9)', line=dict(color='lightcoral', width=0)), row=1, col=1) fig.add_trace(go.Scatter( x=predictions['dates'], y=predictions['q01'], name='90% Confidence Band', line=dict(color='lightcoral', width=0), fill='tonexty', fillcolor='rgba(255,182,193,0.3)' ), row=1, col=1) fig.add_trace(go.Scatter(x=predictions['dates'], y=predictions['values'], name='Median Forecast (Q0.5)', line=dict(color='red', width=3, dash='solid')), row=1, col=1) # Future Bollinger Bands if predictions['future_bb_upper'].size == predictions['dates'].size: fig.add_trace(go.Scatter(x=predictions['dates'], y=predictions['future_bb_upper'], name='BB Upper (Future)', line=dict(color='green', width=1, dash='dot')), row=1, col=1) fig.add_trace(go.Scatter(x=predictions['dates'], y=predictions['future_bb_lower'], name='BB Lower (Future)', line=dict(color='green', width=1, dash='dot')), row=1, col=1) last_hist_date = data.index[-1] last_hist_price = data['Close'].iloc[-1] fig.add_trace(go.Scatter(x=[last_hist_date], y=[last_hist_price], mode='markers', marker=dict(size=10, color='blue', symbol='circle'), name='Last Known Price'), row=1, col=1) # 2. MACD Forecast (Row 2) if predictions['future_macd'].size == predictions['dates'].size: # Perluas data historis MACD untuk charting yang lebih baik lookback_period = 60 macd_hist = data['Close'].ewm(span=12).mean() - data['Close'].ewm(span=26).mean() macd_signal_hist = macd_hist.ewm(span=9).mean() macd_full = np.concatenate([macd_hist.iloc[-lookback_period:].values, predictions['future_macd']]) macd_signal_full = np.concatenate([macd_signal_hist.iloc[-lookback_period:].values, predictions['future_macd_signal']]) macd_dates_full = pd.to_datetime(np.concatenate([data.index[-lookback_period:].values, predictions['dates']])) fig.add_trace(go.Scatter(x=macd_dates_full, y=macd_full, name='MACD Line', line=dict(color='blue', width=2)), row=2, col=1) fig.add_trace(go.Scatter(x=macd_dates_full, y=macd_signal_full, name='Signal Line', line=dict(color='red', width=1)), row=2, col=1) fig.add_vline(x=data.index[-1], line_width=1, line_dash="dash", line_color="gray", row=2, col=1) fig.add_vline(x=data.index[-1], line_width=1, line_dash="dash", line_color="gray", row=1, col=1) fig.update_layout( title=f'Advanced Price & Technical Forecast - Next {len(predictions["dates"])} Days (Chronos-2)', xaxis_title='Date', yaxis_title='Price (IDR)', hovermode='x unified', height=900, legend=dict(yanchor="top", y=0.99, xanchor="left", x=0.01) ) fig.update_yaxes(title_text="Price (IDR)", row=1, col=1) fig.update_yaxes(title_text="MACD Value", row=2, col=1) return fig # ... (Fungsi-fungsi lama lainnya seperti get_indonesian_stocks, calculate_technical_indicators, dll. tetap sama) def get_indonesian_stocks(): return { "BBCA.JK": "Bank Central Asia", "BBRI.JK": "Bank BRI", "BBNI.JK": "Bank BNI", "BMRI.JK": "Bank Mandiri", "TLKM.JK": "Telkom Indonesia", "UNVR.JK": "Unilever Indonesia", "ASII.JK": "Astra International", "INDF.JK": "Indofood Sukses Makmur", "KLBF.JK": "Kalbe Farma", "HMSP.JK": "HM Sampoerna", "GGRM.JK": "Gudang Garam", "ADRO.JK": "Adaro Energy", "PGAS.JK": "Perusahaan Gas Negara", "JSMR.JK": "Jasa Marga", "WIKA.JK": "Wijaya Karya", "PTBA.JK": "Tambang Batubara Bukit Asam", "ANTM.JK": "Aneka Tambang", "SMGR.JK": "Semen Indonesia", "INTP.JK": "Indocement Tunggal Prakasa", "ITMG.JK": "Indo Tambangraya Megah" } def calculate_technical_indicators(data): indicators = {} def calculate_rsi(prices, period=14): delta = prices.diff() gain = (delta.where(delta > 0, 0)).rolling(window=period).mean() loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean() rs = gain / loss rsi = 100 - (100 / (1 + rs)) return rsi rsi_series = calculate_rsi(data['Close']) indicators['rsi'] = {'current': rsi_series.iloc[-1], 'values': rsi_series} def calculate_macd(prices, fast=12, slow=26, signal=9): exp1 = prices.ewm(span=fast).mean() exp2 = prices.ewm(span=slow).mean() macd = exp1 - exp2 signal_line = macd.ewm(span=signal).mean() histogram = macd - signal_line return macd, signal_line, histogram macd, signal_line, histogram = calculate_macd(data['Close']) indicators['macd'] = {'macd': macd.iloc[-1], 'signal': signal_line.iloc[-1], 'histogram': histogram.iloc[-1], 'signal_text': 'BUY' if histogram.iloc[-1] > 0 else 'SELL', 'macd_values': macd, 'signal_values': signal_line} def calculate_bollinger_bands(prices, period=20, std_dev=2): sma = prices.rolling(window=period).mean() std = prices.rolling(window=period).std() upper_band = sma + (std * std_dev) lower_band = sma - (std * std_dev) return upper_band, sma, lower_band upper, middle, lower = calculate_bollinger_bands(data['Close']) current_price = data['Close'].iloc[-1] bb_position = (current_price - lower.iloc[-1]) / (upper.iloc[-1] - lower.iloc[-1]) indicators['bollinger'] = { 'upper': upper.iloc[-1], 'middle': middle.iloc[-1], 'lower': lower.iloc[-1], 'upper_values': upper, 'middle_values': middle, 'lower_values': lower, 'position': 'UPPER' if bb_position > 0.8 else 'LOWER' if bb_position < 0.2 else 'MIDDLE' } sma_20_series = data['Close'].rolling(20).mean() sma_50_series = data['Close'].rolling(50).mean() indicators['moving_averages'] = {'sma_20': sma_20_series.iloc[-1], 'sma_50': sma_50_series.iloc[-1], 'sma_200': data['Close'].rolling(200).mean().iloc[-1], 'ema_12': data['Close'].ewm(span=12).mean().iloc[-1], 'ema_26': data['Close'].ewm(span=26).mean().iloc[-1], 'sma_20_values': sma_20_series, 'sma_50_values': sma_50_series} indicators['volume'] = {'current': data['Volume'].iloc[-1], 'avg_20': data['Volume'].rolling(20).mean().iloc[-1], 'ratio': data['Volume'].iloc[-1] / data['Volume'].rolling(20).mean().iloc[-1]} # Tambahkan kolom indikator ke DataFrame input untuk digunakan nanti (di predict_technical_indicators_future) data['RSI'] = rsi_series data['MACD'] = macd data['MACD_Signal'] = signal_line return indicators def generate_trading_signals(data, indicators): signals = {} current_price = data['Close'].iloc[-1] buy_signals = 0 sell_signals = 0 signal_details = [] rsi = indicators['rsi']['current'] if rsi < 30: buy_signals += 1 signal_details.append(f"✅ RSI ({rsi:.1f}) - Oversold - BUY signal") elif rsi > 70: sell_signals += 1 signal_details.append(f"❌ RSI ({rsi:.1f}) - Overbought - SELL signal") else: signal_details.append(f"⚪ RSI ({rsi:.1f}) - Neutral") macd_hist = indicators['macd']['histogram'] if macd_hist > 0: buy_signals += 1 signal_details.append(f"✅ MACD Histogram ({macd_hist:.4f}) - Positive - BUY signal") else: sell_signals += 1 signal_details.append(f"❌ MACD Histogram ({macd_hist:.4f}) - Negative - SELL signal") bb_position = indicators['bollinger']['position'] if bb_position == 'LOWER': buy_signals += 1 signal_details.append(f"✅ Bollinger Bands - Near lower band - BUY signal") elif bb_position == 'UPPER': sell_signals += 1 signal_details.append(f"❌ Bollinger Bands - Near upper band - SELL signal") else: signal_details.append("⚪ Bollinger Bands - Middle position") sma_20 = indicators['moving_averages']['sma_20'] sma_50 = indicators['moving_averages']['sma_50'] if current_price > sma_20 > sma_50: buy_signals += 1 signal_details.append(f"✅ Price above MA(20,50) - Bullish - BUY signal") elif current_price < sma_20 < sma_50: sell_signals += 1 signal_details.append(f"❌ Price below MA(20,50) - Bearish - SELL signal") else: signal_details.append("⚪ Moving Averages - Mixed signals") volume_ratio = indicators['volume']['ratio'] if volume_ratio > 1.5: buy_signals += 0.5 signal_details.append(f"✅ High volume ({volume_ratio:.1f}x avg) - Strengthens BUY signal") elif volume_ratio < 0.5: sell_signals += 0.5 signal_details.append(f"❌ Low volume ({volume_ratio:.1f}x avg) - Weakens SELL signal") else: signal_details.append(f"⚪ Normal volume ({volume_ratio:.1f}x avg)") total_signals = buy_signals + sell_signals signal_strength = (buy_signals / max(total_signals, 1)) * 100 overall_signal = "BUY" if buy_signals > sell_signals else "SELL" if sell_signals > buy_signals else "HOLD" recent_high = data['High'].tail(20).max() recent_low = data['Low'].tail(20).min() signals = {'overall': overall_signal, 'strength': signal_strength, 'details': '\n'.join(signal_details), 'support': recent_low, 'resistance': recent_high, 'stop_loss': recent_low * 0.95 if overall_signal == "BUY" else recent_high * 1.05} return signals def get_fundamental_data(stock): try: info = stock.info history = stock.history(period="1d") fundamental_info = {'name': info.get('longName', 'N/A'), 'current_price': history['Close'].iloc[-1] if not history.empty else 0, 'market_cap': info.get('marketCap', 0), 'pe_ratio': info.get('forwardPE', 0), 'dividend_yield': info.get('dividendYield', 0) * 100 if info.get('dividendYield') else 0, 'volume': history['Volume'].iloc[-1] if not history.empty else 0, 'info': f"Sector: {info.get('sector', 'N/A')}\nIndustry: {info.get('industry', 'N/A')}\nMarket Cap: {info.get('marketCap', 0)}\n52 Week High: {info.get('fiftyTwoWeekHigh', 'N/A')}\n52 Week Low: {info.get('fiftyTwoWeekLow', 'N/A')}\nBeta: {info.get('beta', 'N/A')}\nEPS: {info.get('forwardEps', 'N/A')}\nBook Value: {info.get('bookValue', 'N/A')}\nPrice to Book: {info.get('priceToBook', 'N/A')}"} return fundamental_info except: return {'name': 'N/A', 'current_price': 0, 'market_cap': 0, 'pe_ratio': 0, 'dividend_yield': 0, 'volume': 0, 'info': 'Unable to fetch fundamental data'} def format_large_number(num): if num >= 1e12: return f"{num/1e12:.2f}T" elif num >= 1e9: return f"{num/1e9:.2f}B" elif num >= 1e6: return f"{num/1e6:.2f}M" elif num >= 1e3: return f"{num/1e3:.2f}K" else: return f"{num:.2f}" def create_price_chart(data, indicators): fig = make_subplots(rows=3, cols=1, shared_xaxes=True, vertical_spacing=0.05) fig.add_trace(go.Candlestick(x=data.index, open=data['Open'], high=data['High'], low=data['Low'], close=data['Close'], name='Price'), row=1, col=1) fig.add_trace(go.Scatter(x=data.index, y=indicators['moving_averages']['sma_20_values'], name='SMA 20', line=dict(color='orange')), row=1, col=1) fig.add_trace(go.Scatter(x=data.index, y=indicators['moving_averages']['sma_50_values'], name='SMA 50', line=dict(color='blue')), row=1, col=1) fig.add_trace(go.Scatter(x=data.index, y=indicators['rsi']['values'], name='RSI', line=dict(color='purple')), row=2, col=1) fig.add_trace(go.Scatter(x=data.index, y=indicators['macd']['macd_values'], name='MACD', line=dict(color='blue')), row=3, col=1) fig.add_trace(go.Scatter(x=data.index, y=indicators['macd']['signal_values'], name='Signal', line=dict(color='red')), row=3, col=1) fig.update_layout(title='Technical Analysis Dashboard', height=900, showlegend=True) return fig def create_technical_chart(data, indicators): fig = make_subplots(rows=2, cols=2, subplot_titles=('Bollinger Bands', 'Volume', 'Price vs MA', 'RSI Analysis')) fig.add_trace(go.Scatter(x=data.index, y=data['Close'], name='Price', line=dict(color='black')), row=1, col=1) fig.add_trace(go.Scatter(x=data.index, y=indicators['bollinger']['upper_values'], name='Upper Band', line=dict(color='red')), row=1, col=1) fig.add_trace(go.Scatter(x=data.index, y=indicators['bollinger']['lower_values'], name='Lower Band', line=dict(color='green'), fill='tonexty', fillcolor='rgba(0,255,0,0.1)'), row=1, col=1) fig.add_trace(go.Bar(x=data.index, y=data['Volume'], name='Volume', marker_color='lightblue'), row=1, col=2) fig.add_trace(go.Scatter(x=data.index, y=data['Close'], name='Price', line=dict(color='gray')), row=2, col=1) fig.add_trace(go.Scatter(x=data.index, y=indicators['moving_averages']['sma_20_values'], name='SMA 20', line=dict(color='orange', dash='dash')), row=2, col=1) fig.add_trace(go.Scatter(x=data.index, y=indicators['moving_averages']['sma_50_values'], name='SMA 50', line=dict(color='blue', dash='dash')), row=2, col=1) fig.add_trace(go.Scatter(x=data.index, y=indicators['rsi']['values'], name='RSI', line=dict(color='purple')), row=2, col=2) fig.add_hline(y=70, line_dash="dash", line_color="red", row=2, col=2) fig.add_hline(y=30, line_dash="dash", line_color="green", row=2, col=2) fig.update_layout(title='Technical Indicators Overview', height=800, showlegend=False, hovermode='x unified') return fig