Spaces:
Runtime error
Runtime error
| import torch | |
| from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline | |
| import gradio as gr | |
| # Initialize the prior and decoder pipelines | |
| prior = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", torch_dtype=torch.bfloat16).to("cuda") | |
| prior.enable_xformers_memory_efficient_attention() | |
| decoder = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", torch_dtype=torch.float16).to("cuda") | |
| decoder.enable_xformers_memory_efficient_attention() | |
| def generate_images( | |
| prompt="a photo of a girl", | |
| negative_prompt="bad,ugly,deformed", | |
| height=1024, | |
| width=1024, | |
| guidance_scale=4.0, | |
| prior_inference_steps=20, | |
| decoder_inference_steps=10 | |
| ): | |
| """ | |
| Generates images based on a given prompt using Stable Diffusion models on CUDA device. | |
| Parameters: | |
| - prompt (str): The prompt to generate images for. | |
| - negative_prompt (str): The negative prompt to guide image generation away from. | |
| - height (int): The height of the generated images. | |
| - width (int): The width of the generated images. | |
| - guidance_scale (float): The scale of guidance for the image generation. | |
| - prior_inference_steps (int): The number of inference steps for the prior model. | |
| - decoder_inference_steps (int): The number of inference steps for the decoder model. | |
| Returns: | |
| - List[PIL.Image]: A list of generated PIL Image objects. | |
| """ | |
| # Generate image embeddings using the prior model | |
| prior_output = prior( | |
| prompt=prompt, | |
| height=height, | |
| width=width, | |
| negative_prompt=negative_prompt, | |
| guidance_scale=guidance_scale, | |
| num_images_per_prompt=1, | |
| num_inference_steps=prior_inference_steps | |
| ) | |
| # Generate images using the decoder model and the embeddings from the prior model | |
| decoder_output = decoder( | |
| image_embeddings=prior_output.image_embeddings.half(), | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| guidance_scale=0.0, # Guidance scale typically set to 0 for decoder as guidance is applied in the prior | |
| output_type="pil", | |
| num_inference_steps=decoder_inference_steps | |
| ).images | |
| return decoder_output | |
| def web_demo(): | |
| with gr.Blocks(): | |
| with gr.Row(): | |
| with gr.Column(): | |
| text2image_prompt = gr.Textbox( | |
| lines=1, | |
| placeholder="Prompt", | |
| show_label=False, | |
| ) | |
| text2image_negative_prompt = gr.Textbox( | |
| lines=1, | |
| placeholder="Negative Prompt", | |
| show_label=False, | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| text2image_height = gr.Slider( | |
| minimum=128, | |
| maximum=1280, | |
| step=32, | |
| value=512, | |
| label="Image Height", | |
| ) | |
| text2image_width = gr.Slider( | |
| minimum=128, | |
| maximum=1280, | |
| step=32, | |
| value=512, | |
| label="Image Width", | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| text2image_guidance_scale = gr.Slider( | |
| minimum=0.1, | |
| maximum=15, | |
| step=0.1, | |
| value=4.0, | |
| label="Guidance Scale", | |
| ) | |
| text2image_prior_inference_step = gr.Slider( | |
| minimum=1, | |
| maximum=50, | |
| step=1, | |
| value=20, | |
| label="Prior Inference Step", | |
| ) | |
| text2image_decoder_inference_step = gr.Slider( | |
| minimum=1, | |
| maximum=50, | |
| step=1, | |
| value=10, | |
| label="Decoder Inference Step", | |
| ) | |
| text2image_predict = gr.Button(value="Generate Image") | |
| with gr.Column(): | |
| output_image = gr.Gallery( | |
| label="Generated images", | |
| show_label=False, | |
| elem_id="gallery", | |
| ) | |
| text2image_predict.click( | |
| fn=generate_images, | |
| inputs=[ | |
| text2image_prompt, | |
| text2image_negative_prompt, | |
| text2image_height, | |
| text2image_width, | |
| text2image_guidance_scale, | |
| text2image_prior_inference_step, | |
| text2image_decoder_inference_step | |
| ], | |
| outputs=output_image, | |
| ) | |