Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
porting-app-poc (#732)
Browse files- ported new app.py [wip] (a03f0fa73833144d05ac2cd45478474c88943b22)
- debugging the codebase (1489ff16db959ab5e96c6a0d454d92151f4772b2)
- added license search (d04186534937ac42efcddc9476b41dcf95aa5e6f)
- app.py +34 -264
- pyproject.toml +2 -1
- requirements.txt +3 -1
- src/display/utils.py +3 -3
- src/leaderboard/filter_models.py +9 -6
- src/leaderboard/read_evals.py +5 -5
- src/submission/check_validity.py +0 -1
- src/tools/plots.py +1 -2
app.py
CHANGED
|
@@ -1,10 +1,11 @@
|
|
| 1 |
import os
|
| 2 |
-
import
|
| 3 |
import logging
|
|
|
|
| 4 |
import gradio as gr
|
| 5 |
-
import pandas as pd
|
| 6 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 7 |
from huggingface_hub import snapshot_download
|
|
|
|
| 8 |
from gradio_space_ci import enable_space_ci
|
| 9 |
|
| 10 |
from src.display.about import (
|
|
@@ -49,14 +50,12 @@ from src.submission.submit import add_new_eval
|
|
| 49 |
from src.tools.collections import update_collections
|
| 50 |
from src.tools.plots import create_metric_plot_obj, create_plot_df, create_scores_df
|
| 51 |
|
| 52 |
-
|
| 53 |
# Configure logging
|
| 54 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 55 |
|
| 56 |
# Start ephemeral Spaces on PRs (see config in README.md)
|
| 57 |
enable_space_ci()
|
| 58 |
|
| 59 |
-
|
| 60 |
def restart_space():
|
| 61 |
API.restart_space(repo_id=REPO_ID, token=H4_TOKEN)
|
| 62 |
|
|
@@ -143,140 +142,6 @@ def load_and_create_plots():
|
|
| 143 |
return plot_df
|
| 144 |
|
| 145 |
|
| 146 |
-
# Searching and filtering
|
| 147 |
-
def update_table(
|
| 148 |
-
hidden_df: pd.DataFrame,
|
| 149 |
-
columns: list,
|
| 150 |
-
type_query: list,
|
| 151 |
-
precision_query: str,
|
| 152 |
-
size_query: list,
|
| 153 |
-
hide_models: list,
|
| 154 |
-
query: str,
|
| 155 |
-
):
|
| 156 |
-
filtered_df = filter_models(
|
| 157 |
-
df=hidden_df,
|
| 158 |
-
type_query=type_query,
|
| 159 |
-
size_query=size_query,
|
| 160 |
-
precision_query=precision_query,
|
| 161 |
-
hide_models=hide_models,
|
| 162 |
-
)
|
| 163 |
-
filtered_df = filter_queries(query, filtered_df)
|
| 164 |
-
df = select_columns(filtered_df, columns)
|
| 165 |
-
return df
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
def load_query(request: gr.Request): # triggered only once at startup => read query parameter if it exists
|
| 169 |
-
query = request.query_params.get("query") or ""
|
| 170 |
-
return (
|
| 171 |
-
query,
|
| 172 |
-
query,
|
| 173 |
-
) # return one for the "search_bar", one for a hidden component that triggers a reload only if value has changed
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
def search_model(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
| 177 |
-
return df[(df[AutoEvalColumn.fullname.name].str.contains(query, case=False, na=False))]
|
| 178 |
-
|
| 179 |
-
def search_license(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
| 180 |
-
return df[df[AutoEvalColumn.license.name].str.contains(query, case=False, na=False)]
|
| 181 |
-
|
| 182 |
-
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
| 183 |
-
always_here_cols = [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
| 184 |
-
dummy_col = [AutoEvalColumn.fullname.name]
|
| 185 |
-
filtered_df = df[always_here_cols + [c for c in COLS if c in df.columns and c in columns] + dummy_col]
|
| 186 |
-
return filtered_df
|
| 187 |
-
|
| 188 |
-
def filter_queries(query: str, df: pd.DataFrame):
|
| 189 |
-
tmp_result_df = []
|
| 190 |
-
|
| 191 |
-
# Empty query return the same df
|
| 192 |
-
if query == "":
|
| 193 |
-
return df
|
| 194 |
-
|
| 195 |
-
# all_queries = [q.strip() for q in query.split(";")]
|
| 196 |
-
# license_queries = []
|
| 197 |
-
all_queries = [q.strip() for q in query.split(";") if q.strip() != ""]
|
| 198 |
-
model_queries = [q for q in all_queries if not q.startswith("licence")]
|
| 199 |
-
license_queries_raw = [q for q in all_queries if q.startswith("license")]
|
| 200 |
-
license_queries = [
|
| 201 |
-
q.replace("license:", "").strip() for q in license_queries_raw if q.replace("license:", "").strip() != ""
|
| 202 |
-
]
|
| 203 |
-
|
| 204 |
-
# Handling model name search
|
| 205 |
-
for query in model_queries:
|
| 206 |
-
tmp_df = search_model(df, query)
|
| 207 |
-
if len(tmp_df) > 0:
|
| 208 |
-
tmp_result_df.append(tmp_df)
|
| 209 |
-
|
| 210 |
-
if not tmp_result_df and not license_queries:
|
| 211 |
-
# Nothing is found, no license_queries -> return empty df
|
| 212 |
-
return pd.DataFrame(columns=df.columns)
|
| 213 |
-
|
| 214 |
-
if tmp_result_df:
|
| 215 |
-
df = pd.concat(tmp_result_df)
|
| 216 |
-
df = df.drop_duplicates(
|
| 217 |
-
subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
|
| 218 |
-
)
|
| 219 |
-
|
| 220 |
-
if not license_queries:
|
| 221 |
-
return df
|
| 222 |
-
|
| 223 |
-
# Handling license search
|
| 224 |
-
tmp_result_df = []
|
| 225 |
-
for query in license_queries:
|
| 226 |
-
tmp_df = search_license(df, query)
|
| 227 |
-
if len(tmp_df) > 0:
|
| 228 |
-
tmp_result_df.append(tmp_df)
|
| 229 |
-
|
| 230 |
-
if not tmp_result_df:
|
| 231 |
-
# Nothing is found, return empty df
|
| 232 |
-
return pd.DataFrame(columns=df.columns)
|
| 233 |
-
|
| 234 |
-
df = pd.concat(tmp_result_df)
|
| 235 |
-
df = df.drop_duplicates(
|
| 236 |
-
subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
|
| 237 |
-
)
|
| 238 |
-
|
| 239 |
-
return df
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
def filter_models(
|
| 243 |
-
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, hide_models: list
|
| 244 |
-
) -> pd.DataFrame:
|
| 245 |
-
# Show all models
|
| 246 |
-
if "Private or deleted" in hide_models:
|
| 247 |
-
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|
| 248 |
-
else:
|
| 249 |
-
filtered_df = df
|
| 250 |
-
|
| 251 |
-
if "Contains a merge/moerge" in hide_models:
|
| 252 |
-
filtered_df = filtered_df[filtered_df[AutoEvalColumn.merged.name] == False]
|
| 253 |
-
|
| 254 |
-
if "MoE" in hide_models:
|
| 255 |
-
filtered_df = filtered_df[filtered_df[AutoEvalColumn.moe.name] == False]
|
| 256 |
-
|
| 257 |
-
if "Flagged" in hide_models:
|
| 258 |
-
filtered_df = filtered_df[filtered_df[AutoEvalColumn.flagged.name] == False]
|
| 259 |
-
|
| 260 |
-
type_emoji = [t[0] for t in type_query]
|
| 261 |
-
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
| 262 |
-
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
| 263 |
-
|
| 264 |
-
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
| 265 |
-
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
| 266 |
-
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
| 267 |
-
filtered_df = filtered_df.loc[mask]
|
| 268 |
-
|
| 269 |
-
return filtered_df
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
leaderboard_df = filter_models(
|
| 273 |
-
df=leaderboard_df,
|
| 274 |
-
type_query=[t.to_str(" : ") for t in ModelType],
|
| 275 |
-
size_query=list(NUMERIC_INTERVALS.keys()),
|
| 276 |
-
precision_query=[i.value.name for i in Precision],
|
| 277 |
-
hide_models=["Private or deleted", "Contains a merge/moerge", "Flagged"], # Deleted, merges, flagged, MoEs
|
| 278 |
-
)
|
| 279 |
-
|
| 280 |
demo = gr.Blocks(css=custom_css)
|
| 281 |
with demo:
|
| 282 |
gr.HTML(TITLE)
|
|
@@ -284,135 +149,40 @@ with demo:
|
|
| 284 |
|
| 285 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 286 |
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
c.name
|
| 304 |
-
for c in fields(AutoEvalColumn)
|
| 305 |
-
if c.displayed_by_default and not c.hidden and not c.never_hidden
|
| 306 |
-
],
|
| 307 |
-
label="Select columns to show",
|
| 308 |
-
elem_id="column-select",
|
| 309 |
-
interactive=True,
|
| 310 |
-
)
|
| 311 |
-
with gr.Row():
|
| 312 |
-
hide_models = gr.CheckboxGroup(
|
| 313 |
-
label="Hide models",
|
| 314 |
-
choices=["Private or deleted", "Contains a merge/moerge", "Flagged", "MoE"],
|
| 315 |
-
value=["Private or deleted", "Contains a merge/moerge", "Flagged"],
|
| 316 |
-
interactive=True,
|
| 317 |
-
)
|
| 318 |
-
with gr.Column(min_width=320):
|
| 319 |
-
# with gr.Box(elem_id="box-filter"):
|
| 320 |
-
filter_columns_type = gr.CheckboxGroup(
|
| 321 |
-
label="Model types",
|
| 322 |
-
choices=[t.to_str() for t in ModelType],
|
| 323 |
-
value=[t.to_str() for t in ModelType],
|
| 324 |
-
interactive=True,
|
| 325 |
-
elem_id="filter-columns-type",
|
| 326 |
-
)
|
| 327 |
-
filter_columns_precision = gr.CheckboxGroup(
|
| 328 |
-
label="Precision",
|
| 329 |
-
choices=[i.value.name for i in Precision],
|
| 330 |
-
value=[i.value.name for i in Precision],
|
| 331 |
-
interactive=True,
|
| 332 |
-
elem_id="filter-columns-precision",
|
| 333 |
-
)
|
| 334 |
-
filter_columns_size = gr.CheckboxGroup(
|
| 335 |
-
label="Model sizes (in billions of parameters)",
|
| 336 |
-
choices=list(NUMERIC_INTERVALS.keys()),
|
| 337 |
-
value=list(NUMERIC_INTERVALS.keys()),
|
| 338 |
-
interactive=True,
|
| 339 |
-
elem_id="filter-columns-size",
|
| 340 |
-
)
|
| 341 |
-
|
| 342 |
-
leaderboard_table = gr.components.Dataframe(
|
| 343 |
-
value=leaderboard_df[
|
| 344 |
-
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
| 345 |
-
+ shown_columns.value
|
| 346 |
-
+ [AutoEvalColumn.fullname.name]
|
| 347 |
],
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
visible=True,
|
| 353 |
-
)
|
| 354 |
-
|
| 355 |
-
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 356 |
-
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 357 |
-
value=original_df[COLS],
|
| 358 |
-
headers=COLS,
|
| 359 |
-
datatype=TYPES,
|
| 360 |
-
visible=False,
|
| 361 |
-
)
|
| 362 |
-
search_bar.submit(
|
| 363 |
-
update_table,
|
| 364 |
-
[
|
| 365 |
-
hidden_leaderboard_table_for_search,
|
| 366 |
-
shown_columns,
|
| 367 |
-
filter_columns_type,
|
| 368 |
-
filter_columns_precision,
|
| 369 |
-
filter_columns_size,
|
| 370 |
-
hide_models,
|
| 371 |
-
search_bar,
|
| 372 |
],
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
hidden_leaderboard_table_for_search,
|
| 382 |
-
shown_columns,
|
| 383 |
-
filter_columns_type,
|
| 384 |
-
filter_columns_precision,
|
| 385 |
-
filter_columns_size,
|
| 386 |
-
hide_models,
|
| 387 |
-
search_bar,
|
| 388 |
],
|
| 389 |
-
|
| 390 |
)
|
| 391 |
-
|
| 392 |
-
demo.load(load_query, inputs=[], outputs=[search_bar, hidden_search_bar])
|
| 393 |
-
|
| 394 |
-
for selector in [
|
| 395 |
-
shown_columns,
|
| 396 |
-
filter_columns_type,
|
| 397 |
-
filter_columns_precision,
|
| 398 |
-
filter_columns_size,
|
| 399 |
-
hide_models,
|
| 400 |
-
]:
|
| 401 |
-
selector.change(
|
| 402 |
-
update_table,
|
| 403 |
-
[
|
| 404 |
-
hidden_leaderboard_table_for_search,
|
| 405 |
-
shown_columns,
|
| 406 |
-
filter_columns_type,
|
| 407 |
-
filter_columns_precision,
|
| 408 |
-
filter_columns_size,
|
| 409 |
-
hide_models,
|
| 410 |
-
search_bar,
|
| 411 |
-
],
|
| 412 |
-
leaderboard_table,
|
| 413 |
-
queue=True,
|
| 414 |
-
)
|
| 415 |
-
|
| 416 |
with gr.TabItem("📈 Metrics through time", elem_id="llm-benchmark-tab-table", id=2):
|
| 417 |
with gr.Row():
|
| 418 |
with gr.Column():
|
|
@@ -543,4 +313,4 @@ scheduler.add_job(restart_space, "interval", hours=3) # restarted every 3h
|
|
| 543 |
scheduler.add_job(update_dynamic_files, "interval", hours=2) # launched every 2 hour
|
| 544 |
scheduler.start()
|
| 545 |
|
| 546 |
-
demo.queue(default_concurrency_limit=40).launch()
|
|
|
|
| 1 |
import os
|
| 2 |
+
import pandas as pd
|
| 3 |
import logging
|
| 4 |
+
import time
|
| 5 |
import gradio as gr
|
|
|
|
| 6 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 7 |
from huggingface_hub import snapshot_download
|
| 8 |
+
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
| 9 |
from gradio_space_ci import enable_space_ci
|
| 10 |
|
| 11 |
from src.display.about import (
|
|
|
|
| 50 |
from src.tools.collections import update_collections
|
| 51 |
from src.tools.plots import create_metric_plot_obj, create_plot_df, create_scores_df
|
| 52 |
|
|
|
|
| 53 |
# Configure logging
|
| 54 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 55 |
|
| 56 |
# Start ephemeral Spaces on PRs (see config in README.md)
|
| 57 |
enable_space_ci()
|
| 58 |
|
|
|
|
| 59 |
def restart_space():
|
| 60 |
API.restart_space(repo_id=REPO_ID, token=H4_TOKEN)
|
| 61 |
|
|
|
|
| 142 |
return plot_df
|
| 143 |
|
| 144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
demo = gr.Blocks(css=custom_css)
|
| 146 |
with demo:
|
| 147 |
gr.HTML(TITLE)
|
|
|
|
| 149 |
|
| 150 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 151 |
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
| 152 |
+
leaderboard = Leaderboard(
|
| 153 |
+
value=leaderboard_df,
|
| 154 |
+
datatype=[c.type for c in fields(AutoEvalColumn)],
|
| 155 |
+
select_columns=SelectColumns(
|
| 156 |
+
default_selection=[
|
| 157 |
+
c.name
|
| 158 |
+
for c in fields(AutoEvalColumn)
|
| 159 |
+
if c.displayed_by_default
|
| 160 |
+
],
|
| 161 |
+
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.dummy],
|
| 162 |
+
label="Select Columns to Display:",
|
| 163 |
+
),
|
| 164 |
+
search_columns=[
|
| 165 |
+
AutoEvalColumn.model.name,
|
| 166 |
+
AutoEvalColumn.fullname.name,
|
| 167 |
+
AutoEvalColumn.license.name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
],
|
| 169 |
+
hide_columns=[
|
| 170 |
+
c.name
|
| 171 |
+
for c in fields(AutoEvalColumn)
|
| 172 |
+
if c.hidden
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
],
|
| 174 |
+
filter_columns=[
|
| 175 |
+
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
|
| 176 |
+
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
|
| 177 |
+
ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max=150, label="Select the number of parameters (B)"),
|
| 178 |
+
ColumnFilter(AutoEvalColumn.still_on_hub.name, type="boolean", label="Private or deleted", default=True),
|
| 179 |
+
ColumnFilter(AutoEvalColumn.merged.name, type="boolean", label="Contains a merge/moerge", default=True),
|
| 180 |
+
ColumnFilter(AutoEvalColumn.moe.name, type="boolean", label="MoE", default=False),
|
| 181 |
+
ColumnFilter(AutoEvalColumn.not_flagged.name, type="boolean", label="Flagged", default=True),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
],
|
| 183 |
+
bool_checkboxgroup_label="Hide models"
|
| 184 |
)
|
| 185 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
with gr.TabItem("📈 Metrics through time", elem_id="llm-benchmark-tab-table", id=2):
|
| 187 |
with gr.Row():
|
| 188 |
with gr.Column():
|
|
|
|
| 313 |
scheduler.add_job(update_dynamic_files, "interval", hours=2) # launched every 2 hour
|
| 314 |
scheduler.start()
|
| 315 |
|
| 316 |
+
demo.queue(default_concurrency_limit=40).launch()
|
pyproject.toml
CHANGED
|
@@ -44,9 +44,10 @@ tqdm = "4.65.0"
|
|
| 44 |
transformers = "4.40.0"
|
| 45 |
tokenizers = ">=0.15.0"
|
| 46 |
gradio-space-ci = {git = "https://huggingface.co/spaces/Wauplin/gradio-space-ci", rev = "0.2.3"}
|
| 47 |
-
gradio = "4.
|
| 48 |
isort = "^5.13.2"
|
| 49 |
ruff = "^0.3.5"
|
|
|
|
| 50 |
|
| 51 |
[build-system]
|
| 52 |
requires = ["poetry-core"]
|
|
|
|
| 44 |
transformers = "4.40.0"
|
| 45 |
tokenizers = ">=0.15.0"
|
| 46 |
gradio-space-ci = {git = "https://huggingface.co/spaces/Wauplin/gradio-space-ci", rev = "0.2.3"}
|
| 47 |
+
gradio = " 4.20.0"
|
| 48 |
isort = "^5.13.2"
|
| 49 |
ruff = "^0.3.5"
|
| 50 |
+
gradio-leaderboard = "0.0.8"
|
| 51 |
|
| 52 |
[build-system]
|
| 53 |
requires = ["poetry-core"]
|
requirements.txt
CHANGED
|
@@ -13,4 +13,6 @@ sentencepiece
|
|
| 13 |
tqdm==4.65.0
|
| 14 |
transformers==4.40.0
|
| 15 |
tokenizers>=0.15.0
|
| 16 |
-
gradio-space-ci @ git+https://huggingface.co/spaces/Wauplin/gradio-space-ci@0.2.3 # CI !!!
|
|
|
|
|
|
|
|
|
| 13 |
tqdm==4.65.0
|
| 14 |
transformers==4.40.0
|
| 15 |
tokenizers>=0.15.0
|
| 16 |
+
gradio-space-ci @ git+https://huggingface.co/spaces/Wauplin/gradio-space-ci@0.2.3 # CI !!!
|
| 17 |
+
gradio==4.20.0
|
| 18 |
+
gradio_leaderboard==0.0.8
|
src/display/utils.py
CHANGED
|
@@ -89,7 +89,7 @@ auto_eval_column_dict.append(
|
|
| 89 |
["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False, hidden=True)]
|
| 90 |
)
|
| 91 |
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
| 92 |
-
auto_eval_column_dict.append(["
|
| 93 |
auto_eval_column_dict.append(["moe", ColumnContent, ColumnContent("MoE", "bool", False, hidden=True)])
|
| 94 |
# Dummy column for the search bar (hidden by the custom CSS)
|
| 95 |
auto_eval_column_dict.append(["fullname", ColumnContent, ColumnContent("fullname", "str", False, dummy=True)])
|
|
@@ -123,7 +123,7 @@ baseline_row = {
|
|
| 123 |
AutoEvalColumn.gsm8k.name: 0.21,
|
| 124 |
AutoEvalColumn.fullname.name: "baseline",
|
| 125 |
AutoEvalColumn.model_type.name: "",
|
| 126 |
-
AutoEvalColumn.
|
| 127 |
}
|
| 128 |
|
| 129 |
# Average ⬆️ human baseline is 0.897 (source: averaging human baselines below)
|
|
@@ -148,7 +148,7 @@ human_baseline_row = {
|
|
| 148 |
AutoEvalColumn.gsm8k.name: 100,
|
| 149 |
AutoEvalColumn.fullname.name: "human_baseline",
|
| 150 |
AutoEvalColumn.model_type.name: "",
|
| 151 |
-
AutoEvalColumn.
|
| 152 |
}
|
| 153 |
|
| 154 |
|
|
|
|
| 89 |
["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False, hidden=True)]
|
| 90 |
)
|
| 91 |
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
| 92 |
+
auto_eval_column_dict.append(["not_flagged", ColumnContent, ColumnContent("Flagged", "bool", False, hidden=True)])
|
| 93 |
auto_eval_column_dict.append(["moe", ColumnContent, ColumnContent("MoE", "bool", False, hidden=True)])
|
| 94 |
# Dummy column for the search bar (hidden by the custom CSS)
|
| 95 |
auto_eval_column_dict.append(["fullname", ColumnContent, ColumnContent("fullname", "str", False, dummy=True)])
|
|
|
|
| 123 |
AutoEvalColumn.gsm8k.name: 0.21,
|
| 124 |
AutoEvalColumn.fullname.name: "baseline",
|
| 125 |
AutoEvalColumn.model_type.name: "",
|
| 126 |
+
AutoEvalColumn.not_flagged.name: False,
|
| 127 |
}
|
| 128 |
|
| 129 |
# Average ⬆️ human baseline is 0.897 (source: averaging human baselines below)
|
|
|
|
| 148 |
AutoEvalColumn.gsm8k.name: 100,
|
| 149 |
AutoEvalColumn.fullname.name: "human_baseline",
|
| 150 |
AutoEvalColumn.model_type.name: "",
|
| 151 |
+
AutoEvalColumn.not_flagged.name: False,
|
| 152 |
}
|
| 153 |
|
| 154 |
|
src/leaderboard/filter_models.py
CHANGED
|
@@ -133,11 +133,14 @@ DO_NOT_SUBMIT_MODELS = [
|
|
| 133 |
def flag_models(leaderboard_data: list[dict]):
|
| 134 |
"""Flags models based on external criteria or flagged status."""
|
| 135 |
for model_data in leaderboard_data:
|
| 136 |
-
#
|
| 137 |
-
if model_data[AutoEvalColumn.
|
| 138 |
-
flag_key = "merged"
|
| 139 |
-
else:
|
| 140 |
flag_key = model_data[AutoEvalColumn.fullname.name]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
if flag_key in FLAGGED_MODELS:
|
| 142 |
issue_num = FLAGGED_MODELS[flag_key].split("/")[-1]
|
| 143 |
issue_link = model_hyperlink(
|
|
@@ -147,9 +150,9 @@ def flag_models(leaderboard_data: list[dict]):
|
|
| 147 |
model_data[AutoEvalColumn.model.name] = (
|
| 148 |
f"{model_data[AutoEvalColumn.model.name]} has been flagged! {issue_link}"
|
| 149 |
)
|
| 150 |
-
model_data[AutoEvalColumn.
|
| 151 |
else:
|
| 152 |
-
model_data[AutoEvalColumn.
|
| 153 |
|
| 154 |
|
| 155 |
def remove_forbidden_models(leaderboard_data: list[dict]):
|
|
|
|
| 133 |
def flag_models(leaderboard_data: list[dict]):
|
| 134 |
"""Flags models based on external criteria or flagged status."""
|
| 135 |
for model_data in leaderboard_data:
|
| 136 |
+
# If a model is not flagged, use its "fullname" as a key
|
| 137 |
+
if model_data[AutoEvalColumn.not_flagged.name]:
|
|
|
|
|
|
|
| 138 |
flag_key = model_data[AutoEvalColumn.fullname.name]
|
| 139 |
+
else:
|
| 140 |
+
# Merges and moes are flagged
|
| 141 |
+
flag_key = "merged"
|
| 142 |
+
|
| 143 |
+
# Reverse the logic: Check for non-flagged models instead
|
| 144 |
if flag_key in FLAGGED_MODELS:
|
| 145 |
issue_num = FLAGGED_MODELS[flag_key].split("/")[-1]
|
| 146 |
issue_link = model_hyperlink(
|
|
|
|
| 150 |
model_data[AutoEvalColumn.model.name] = (
|
| 151 |
f"{model_data[AutoEvalColumn.model.name]} has been flagged! {issue_link}"
|
| 152 |
)
|
| 153 |
+
model_data[AutoEvalColumn.not_flagged.name] = False
|
| 154 |
else:
|
| 155 |
+
model_data[AutoEvalColumn.not_flagged.name] = True
|
| 156 |
|
| 157 |
|
| 158 |
def remove_forbidden_models(leaderboard_data: list[dict]):
|
src/leaderboard/read_evals.py
CHANGED
|
@@ -37,7 +37,7 @@ class EvalResult:
|
|
| 37 |
date: str = "" # submission date of request file
|
| 38 |
still_on_hub: bool = True
|
| 39 |
is_merge: bool = False
|
| 40 |
-
|
| 41 |
status: str = "FINISHED"
|
| 42 |
# List of tags, initialized to a new empty list for each instance to avoid the pitfalls of mutable default arguments.
|
| 43 |
tags: List[str] = field(default_factory=list)
|
|
@@ -164,7 +164,7 @@ class EvalResult:
|
|
| 164 |
self.tags = file_dict.get("tags", [])
|
| 165 |
|
| 166 |
# Calculate `flagged` only if 'tags' is not empty and avoid calculating each time
|
| 167 |
-
self.
|
| 168 |
|
| 169 |
|
| 170 |
def to_dict(self):
|
|
@@ -185,9 +185,9 @@ class EvalResult:
|
|
| 185 |
AutoEvalColumn.likes.name: self.likes,
|
| 186 |
AutoEvalColumn.params.name: self.num_params,
|
| 187 |
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
| 188 |
-
AutoEvalColumn.merged.name: "merge" in self.tags if self.tags else False,
|
| 189 |
-
AutoEvalColumn.moe.name: ("moe" in self.tags if self.tags else False) or "moe" in self.full_model.lower(),
|
| 190 |
-
AutoEvalColumn.
|
| 191 |
}
|
| 192 |
|
| 193 |
for task in Tasks:
|
|
|
|
| 37 |
date: str = "" # submission date of request file
|
| 38 |
still_on_hub: bool = True
|
| 39 |
is_merge: bool = False
|
| 40 |
+
not_flagged: bool = False
|
| 41 |
status: str = "FINISHED"
|
| 42 |
# List of tags, initialized to a new empty list for each instance to avoid the pitfalls of mutable default arguments.
|
| 43 |
tags: List[str] = field(default_factory=list)
|
|
|
|
| 164 |
self.tags = file_dict.get("tags", [])
|
| 165 |
|
| 166 |
# Calculate `flagged` only if 'tags' is not empty and avoid calculating each time
|
| 167 |
+
self.not_flagged = not (any("flagged" in tag for tag in self.tags))
|
| 168 |
|
| 169 |
|
| 170 |
def to_dict(self):
|
|
|
|
| 185 |
AutoEvalColumn.likes.name: self.likes,
|
| 186 |
AutoEvalColumn.params.name: self.num_params,
|
| 187 |
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
| 188 |
+
AutoEvalColumn.merged.name: not( "merge" in self.tags if self.tags else False),
|
| 189 |
+
AutoEvalColumn.moe.name: not ( ("moe" in self.tags if self.tags else False) or "moe" in self.full_model.lower()) ,
|
| 190 |
+
AutoEvalColumn.not_flagged.name: self.not_flagged,
|
| 191 |
}
|
| 192 |
|
| 193 |
for task in Tasks:
|
src/submission/check_validity.py
CHANGED
|
@@ -170,7 +170,6 @@ def get_model_tags(model_card, model: str):
|
|
| 170 |
is_moe_from_model_card = any(keyword in model_card.text.lower() for keyword in ["moe", "mixtral"])
|
| 171 |
# Hardcoding because of gating problem
|
| 172 |
if "Qwen/Qwen1.5-32B" in model:
|
| 173 |
-
print("HERE NSHJNKJSNJLAS")
|
| 174 |
is_moe_from_model_card = False
|
| 175 |
is_moe_from_name = "moe" in model.lower().replace("/", "-").replace("_", "-").split("-")
|
| 176 |
if is_moe_from_model_card or is_moe_from_name or is_moe_from_metadata:
|
|
|
|
| 170 |
is_moe_from_model_card = any(keyword in model_card.text.lower() for keyword in ["moe", "mixtral"])
|
| 171 |
# Hardcoding because of gating problem
|
| 172 |
if "Qwen/Qwen1.5-32B" in model:
|
|
|
|
| 173 |
is_moe_from_model_card = False
|
| 174 |
is_moe_from_name = "moe" in model.lower().replace("/", "-").replace("_", "-").split("-")
|
| 175 |
if is_moe_from_model_card or is_moe_from_name or is_moe_from_metadata:
|
src/tools/plots.py
CHANGED
|
@@ -34,7 +34,7 @@ def create_scores_df(raw_data: list[EvalResult]) -> pd.DataFrame:
|
|
| 34 |
# We ignore models that are flagged/no longer on the hub/not finished
|
| 35 |
to_ignore = (
|
| 36 |
not row["still_on_hub"]
|
| 37 |
-
or row["
|
| 38 |
or current_model in FLAGGED_MODELS
|
| 39 |
or row["status"] != "FINISHED"
|
| 40 |
)
|
|
@@ -68,7 +68,6 @@ def create_plot_df(scores_df: dict[str : pd.DataFrame]) -> pd.DataFrame:
|
|
| 68 |
"""
|
| 69 |
# Initialize the list to store DataFrames
|
| 70 |
dfs = []
|
| 71 |
-
|
| 72 |
# Iterate over the cols and create a new DataFrame for each column
|
| 73 |
for col in BENCHMARK_COLS + [AutoEvalColumn.average.name]:
|
| 74 |
d = scores_df[col].reset_index(drop=True)
|
|
|
|
| 34 |
# We ignore models that are flagged/no longer on the hub/not finished
|
| 35 |
to_ignore = (
|
| 36 |
not row["still_on_hub"]
|
| 37 |
+
or not row["not_flagged"]
|
| 38 |
or current_model in FLAGGED_MODELS
|
| 39 |
or row["status"] != "FINISHED"
|
| 40 |
)
|
|
|
|
| 68 |
"""
|
| 69 |
# Initialize the list to store DataFrames
|
| 70 |
dfs = []
|
|
|
|
| 71 |
# Iterate over the cols and create a new DataFrame for each column
|
| 72 |
for col in BENCHMARK_COLS + [AutoEvalColumn.average.name]:
|
| 73 |
d = scores_df[col].reset_index(drop=True)
|