Commit
·
de86128
1
Parent(s):
ae554ae
Add language and license info
Browse files- README.md +1 -1
- models.py +259 -0
- requirements.txt +1 -0
README.md
CHANGED
|
@@ -5,7 +5,7 @@ colorFrom: indigo
|
|
| 5 |
colorTo: blue
|
| 6 |
sdk: streamlit
|
| 7 |
sdk_version: 1.10.0
|
| 8 |
-
app_file:
|
| 9 |
pinned: false
|
| 10 |
---
|
| 11 |
|
|
|
|
| 5 |
colorTo: blue
|
| 6 |
sdk: streamlit
|
| 7 |
sdk_version: 1.10.0
|
| 8 |
+
app_file: models.py
|
| 9 |
pinned: false
|
| 10 |
---
|
| 11 |
|
models.py
ADDED
|
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from datasets import load_dataset
|
| 4 |
+
from ast import literal_eval
|
| 5 |
+
import altair as alt
|
| 6 |
+
|
| 7 |
+
nlp_tasks = ["text-classification", "text-generation", "text2text-generation", "token-classification", "fill-mask", "question-answering"
|
| 8 |
+
"translation", "conversational", "sentence-similarity", "summarization", "multiple-choice", "zero-shot-classification", "table-question-answering"
|
| 9 |
+
]
|
| 10 |
+
audio_tasks = ["automatic-speech-recognition", "audio-classification", "text-to-speech", "audio-to-audio", "voice-activity-detection"]
|
| 11 |
+
cv_tasks = ["image-classification", "image-segmentation", "zero-shot-image-classification", "image-to-image", "unconditional-image-generation", "object-detection"]
|
| 12 |
+
multimodal = ["feature-extraction", "text-to-image", "visual-question-answering", "image-to-text", "document-question-answering"]
|
| 13 |
+
tabular = ["tabular-clasification", "tabular-regression"]
|
| 14 |
+
|
| 15 |
+
modalities = {
|
| 16 |
+
"nlp": nlp_tasks,
|
| 17 |
+
"audio": audio_tasks,
|
| 18 |
+
"cv": cv_tasks,
|
| 19 |
+
"multimodal": multimodal,
|
| 20 |
+
"tabular": tabular,
|
| 21 |
+
"rl": ["reinforcement-learning"]
|
| 22 |
+
}
|
| 23 |
+
|
| 24 |
+
def modality(row):
|
| 25 |
+
pipeline = row["pipeline"]
|
| 26 |
+
for modality, tasks in modalities.items():
|
| 27 |
+
if pipeline in tasks:
|
| 28 |
+
return modality
|
| 29 |
+
if type(pipeline) == "str":
|
| 30 |
+
return "unk_modality"
|
| 31 |
+
return None
|
| 32 |
+
|
| 33 |
+
supported_revisions = ["27_09_22"]
|
| 34 |
+
|
| 35 |
+
def process_dataset(version):
|
| 36 |
+
# Load dataset at specified revision
|
| 37 |
+
dataset = load_dataset("open-source-metrics/model-repos-stats", revision=version)
|
| 38 |
+
|
| 39 |
+
# Convert to pandas dataframe
|
| 40 |
+
data = dataset["train"].to_pandas()
|
| 41 |
+
|
| 42 |
+
# Add modality column
|
| 43 |
+
data["modality"] = data.apply(modality, axis=1)
|
| 44 |
+
|
| 45 |
+
# Bin the model card length into some bins
|
| 46 |
+
data["length_bins"] = pd.cut(data["text_length"], [0, 200, 1000, 2000, 3000, 4000, 5000, 7500, 10000, 20000, 50000])
|
| 47 |
+
|
| 48 |
+
return data
|
| 49 |
+
|
| 50 |
+
base = st.selectbox(
|
| 51 |
+
'What revision do you want to use',
|
| 52 |
+
supported_revisions)
|
| 53 |
+
data = process_dataset(base)
|
| 54 |
+
|
| 55 |
+
total_samples = data.shape[0]
|
| 56 |
+
st.metric(label="Total models", value=total_samples)
|
| 57 |
+
|
| 58 |
+
tab1, tab2, tab3, tab4, tab5, tab6, tab7 = st.tabs(["Language", "License", "Pipeline", "Discussion Features", "Libraries", "Model Cards", "Super users"])
|
| 59 |
+
|
| 60 |
+
with tab1:
|
| 61 |
+
st.header("Languages info")
|
| 62 |
+
|
| 63 |
+
data.loc[data.languages == "False", 'languages'] = None
|
| 64 |
+
data.loc[data.languages == {}, 'languages'] = None
|
| 65 |
+
|
| 66 |
+
no_lang_count = data["languages"].isna().sum()
|
| 67 |
+
data["languages"] = data["languages"].fillna('none')
|
| 68 |
+
|
| 69 |
+
def make_list(row):
|
| 70 |
+
languages = row["languages"]
|
| 71 |
+
if languages == "none":
|
| 72 |
+
return []
|
| 73 |
+
return literal_eval(languages)
|
| 74 |
+
|
| 75 |
+
def language_count(row):
|
| 76 |
+
languages = row["languages"]
|
| 77 |
+
leng = len(languages)
|
| 78 |
+
return leng
|
| 79 |
+
|
| 80 |
+
data["languages"] = data.apply(make_list, axis=1)
|
| 81 |
+
data["repos_count"] = data.apply(language_count, axis=1)
|
| 82 |
+
|
| 83 |
+
models_with_langs = data[data["repos_count"] > 0]
|
| 84 |
+
langs = models_with_langs["languages"].explode()
|
| 85 |
+
langs = langs[langs != {}]
|
| 86 |
+
total_langs = len(langs.unique())
|
| 87 |
+
|
| 88 |
+
col1, col2, col3 = st.columns(3)
|
| 89 |
+
with col1:
|
| 90 |
+
st.metric(label="Language Specified", value=total_samples-no_lang_count)
|
| 91 |
+
with col2:
|
| 92 |
+
st.metric(label="No Language Specified", value=no_lang_count)
|
| 93 |
+
with col3:
|
| 94 |
+
st.metric(label="Total Unique Languages", value=total_langs)
|
| 95 |
+
|
| 96 |
+
st.subheader("Distribution of languages per model repo")
|
| 97 |
+
linguality = st.selectbox(
|
| 98 |
+
'All or just Multilingual',
|
| 99 |
+
["All", "Just Multilingual", "Three or more languages"])
|
| 100 |
+
|
| 101 |
+
filter = 0
|
| 102 |
+
if linguality == "Just Multilingual":
|
| 103 |
+
filter = 1
|
| 104 |
+
elif linguality == "Three or more languages":
|
| 105 |
+
filter = 2
|
| 106 |
+
|
| 107 |
+
models_with_langs = data[data["repos_count"] > filter]
|
| 108 |
+
df1 = models_with_langs['repos_count'].value_counts()
|
| 109 |
+
st.bar_chart(df1)
|
| 110 |
+
|
| 111 |
+
st.subheader("Distribution of repos per language")
|
| 112 |
+
linguality_2 = st.selectbox(
|
| 113 |
+
'All or filtered',
|
| 114 |
+
["All", "No English", "Remove top 10"])
|
| 115 |
+
|
| 116 |
+
filter = 0
|
| 117 |
+
if linguality_2 == "All":
|
| 118 |
+
filter = 0
|
| 119 |
+
elif linguality_2 == "No English":
|
| 120 |
+
filter = 1
|
| 121 |
+
else:
|
| 122 |
+
filter = 2
|
| 123 |
+
|
| 124 |
+
models_with_langs = data[data["repos_count"] > 0]
|
| 125 |
+
langs = models_with_langs["languages"].explode()
|
| 126 |
+
langs = langs[langs != {}]
|
| 127 |
+
|
| 128 |
+
d = langs.value_counts().rename_axis("language").to_frame('counts').reset_index()
|
| 129 |
+
if filter == 1:
|
| 130 |
+
d = d.iloc[1:]
|
| 131 |
+
elif filter == 2:
|
| 132 |
+
d = d.iloc[10:]
|
| 133 |
+
|
| 134 |
+
# Just keep top 25 to avoid vertical scroll
|
| 135 |
+
d = d.iloc[:25]
|
| 136 |
+
|
| 137 |
+
st.write(alt.Chart(d).mark_bar().encode(
|
| 138 |
+
x='counts',
|
| 139 |
+
y=alt.X('language', sort=None)
|
| 140 |
+
))
|
| 141 |
+
|
| 142 |
+
st.subheader("Raw Data")
|
| 143 |
+
col1, col2 = st.columns(2)
|
| 144 |
+
with col1:
|
| 145 |
+
st.dataframe(df1)
|
| 146 |
+
with col2:
|
| 147 |
+
d = langs.value_counts().rename_axis("language").to_frame('counts').reset_index()
|
| 148 |
+
st.dataframe(d)
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
with tab2:
|
| 153 |
+
st.header("License info")
|
| 154 |
+
|
| 155 |
+
no_license_count = data["license"].isna().sum()
|
| 156 |
+
col1, col2, col3 = st.columns(3)
|
| 157 |
+
with col1:
|
| 158 |
+
st.metric(label="License Specified", value=total_samples-no_license_count)
|
| 159 |
+
with col2:
|
| 160 |
+
st.metric(label="No license Specified", value=no_license_count)
|
| 161 |
+
with col3:
|
| 162 |
+
st.metric(label="Total Unique Licenses", value=len(data["license"].unique()))
|
| 163 |
+
|
| 164 |
+
st.subheader("Distribution of licenses per model repo")
|
| 165 |
+
license_filter = st.selectbox(
|
| 166 |
+
'All or filtered',
|
| 167 |
+
["All", "No Apache 2.0", "Remove top 10"])
|
| 168 |
+
|
| 169 |
+
filter = 0
|
| 170 |
+
if license_filter == "All":
|
| 171 |
+
filter = 0
|
| 172 |
+
elif license_filter == "No Apache 2.0":
|
| 173 |
+
filter = 1
|
| 174 |
+
else:
|
| 175 |
+
filter = 2
|
| 176 |
+
|
| 177 |
+
d = data["license"].value_counts().rename_axis("license").to_frame('counts').reset_index()
|
| 178 |
+
if filter == 1:
|
| 179 |
+
d = d.iloc[1:]
|
| 180 |
+
elif filter == 2:
|
| 181 |
+
d = d.iloc[10:]
|
| 182 |
+
|
| 183 |
+
# Just keep top 25 to avoid vertical scroll
|
| 184 |
+
d = d.iloc[:25]
|
| 185 |
+
|
| 186 |
+
st.write(alt.Chart(d).mark_bar().encode(
|
| 187 |
+
x='counts',
|
| 188 |
+
y=alt.X('license', sort=None)
|
| 189 |
+
))
|
| 190 |
+
st.text("There are some edge cases, as old repos using lists of licenses. We are working on fixing this.")
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
st.subheader("Raw Data")
|
| 194 |
+
d = data["license"].value_counts().rename_axis("license").to_frame('counts').reset_index()
|
| 195 |
+
st.dataframe(d)
|
| 196 |
+
|
| 197 |
+
with tab3:
|
| 198 |
+
st.header("Pipeline info")
|
| 199 |
+
|
| 200 |
+
no_pipeline_count = data["pipeline"].isna().sum()
|
| 201 |
+
col1, col2, col3 = st.columns(3)
|
| 202 |
+
with col1:
|
| 203 |
+
st.metric(label="Pipeline Specified", value=total_samples-no_pipeline_count)
|
| 204 |
+
with col2:
|
| 205 |
+
st.metric(label="No pipeline Specified", value=no_pipeline_count)
|
| 206 |
+
with col3:
|
| 207 |
+
st.metric(label="Total Unique Pipelines", value=len(data["pipeline"].unique()))
|
| 208 |
+
|
| 209 |
+
st.subheader("Distribution of pipelines per model repo")
|
| 210 |
+
pipeline_filter = st.selectbox(
|
| 211 |
+
'All or filtered',
|
| 212 |
+
["All", "NLP", "CV", "Audio", "RL", "Multimodal", "Tabular"])
|
| 213 |
+
|
| 214 |
+
filter = 0
|
| 215 |
+
if pipeline_filter == "All":
|
| 216 |
+
filter = 0
|
| 217 |
+
elif pipeline_filter == "NLP":
|
| 218 |
+
filter = 1
|
| 219 |
+
elif pipeline_filter == "CV":
|
| 220 |
+
filter = 2
|
| 221 |
+
elif pipeline_filter == "Audio":
|
| 222 |
+
filter = 3
|
| 223 |
+
elif pipeline_filter == "RL":
|
| 224 |
+
filter = 4
|
| 225 |
+
elif pipeline_filter == "Multimodal":
|
| 226 |
+
filter = 5
|
| 227 |
+
elif pipeline_filter == "Tabular":
|
| 228 |
+
filter = 6
|
| 229 |
+
|
| 230 |
+
d = data["pipeline"].value_counts().rename_axis("pipeline").to_frame('counts').reset_index()
|
| 231 |
+
|
| 232 |
+
st.write(alt.Chart(d).mark_bar().encode(
|
| 233 |
+
x='counts',
|
| 234 |
+
y=alt.X('pipeline', sort=None)
|
| 235 |
+
))
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
datasets
|