Spaces:
Runtime error
Runtime error
Commit
·
fe8da28
1
Parent(s):
bd334dc
Cumulated only for pip
Browse files
app.py
CHANGED
|
@@ -6,7 +6,7 @@ from http.server import SimpleHTTPRequestHandler, ThreadingHTTPServer
|
|
| 6 |
from urllib.parse import parse_qs, urlparse
|
| 7 |
|
| 8 |
from huggingface_hub import list_datasets, set_access_token, HfFolder
|
| 9 |
-
from datasets import load_dataset, DatasetDict
|
| 10 |
import numpy as np
|
| 11 |
|
| 12 |
HF_TOKEN = os.environ['HF_TOKEN']
|
|
@@ -20,6 +20,30 @@ datasets = {
|
|
| 20 |
"pip": load_dataset("open-source-metrics/pip").sort('day')
|
| 21 |
}
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
# datasets = {
|
| 24 |
# k1: DatasetDict({
|
| 25 |
# k2: v2.select(range(0, len(v2), max(1, int(len(v2) / 1000)))) for k2, v2 in v1.items()
|
|
@@ -27,6 +51,18 @@ datasets = {
|
|
| 27 |
# }
|
| 28 |
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
def running_mean(x, N, total_length=-1):
|
| 31 |
cumsum = np.cumsum(np.insert(x, 0, 0))
|
| 32 |
to_pad = max(total_length - len(cumsum), 0)
|
|
@@ -43,7 +79,6 @@ class RequestHandler(SimpleHTTPRequestHandler):
|
|
| 43 |
|
| 44 |
if self.path.startswith("/initialize"):
|
| 45 |
dataset_keys = {k: set(v.keys()) for k, v in datasets.items()}
|
| 46 |
-
dataset_keys['issues'].remove('transformers')
|
| 47 |
dataset_with_most_splits = max([d for d in dataset_keys.values()], key=len)
|
| 48 |
warnings = []
|
| 49 |
|
|
@@ -68,18 +103,34 @@ class RequestHandler(SimpleHTTPRequestHandler):
|
|
| 68 |
library_names = query.get("input", None)[0]
|
| 69 |
library_names = library_names.split(',')
|
| 70 |
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
for
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
returned_values = collections.OrderedDict(sorted(returned_values.items()))
|
| 85 |
output = {l: [k[l] for k in returned_values.values()] for l in library_names}
|
|
@@ -105,23 +156,20 @@ class RequestHandler(SimpleHTTPRequestHandler):
|
|
| 105 |
for library_name in library_names:
|
| 106 |
dataset = dataset_dict[library_name]
|
| 107 |
|
| 108 |
-
n = 0
|
| 109 |
for i in dataset:
|
| 110 |
-
n += 1
|
| 111 |
if i['dates'] in returned_values:
|
| 112 |
-
returned_values[i['dates']][library_name] =
|
| 113 |
else:
|
| 114 |
-
returned_values[i['dates']] = {library_name:
|
| 115 |
-
|
| 116 |
-
for library_name in library_names:
|
| 117 |
-
for i in returned_values.keys():
|
| 118 |
-
if library_name not in returned_values[i]:
|
| 119 |
-
returned_values[i][library_name] = None
|
| 120 |
|
| 121 |
returned_values = collections.OrderedDict(sorted(returned_values.items()))
|
|
|
|
| 122 |
output = {l: [k[l] for k in returned_values.values()][::-1] for l in library_names}
|
| 123 |
output['day'] = list(returned_values.keys())[::-1]
|
| 124 |
|
|
|
|
|
|
|
|
|
|
| 125 |
self.send_response(200)
|
| 126 |
self.send_header("Content-Type", "application/json")
|
| 127 |
self.end_headers()
|
|
@@ -142,23 +190,20 @@ class RequestHandler(SimpleHTTPRequestHandler):
|
|
| 142 |
for library_name in library_names:
|
| 143 |
dataset = dataset_dict[library_name]
|
| 144 |
|
| 145 |
-
|
| 146 |
-
for k, i in enumerate(dataset):
|
| 147 |
-
n += 1
|
| 148 |
if i['dates'] in returned_values:
|
| 149 |
-
returned_values[i['dates']][library_name] =
|
| 150 |
else:
|
| 151 |
-
returned_values[i['dates']] = {library_name:
|
| 152 |
-
|
| 153 |
-
for library_name in library_names:
|
| 154 |
-
for i in returned_values.keys():
|
| 155 |
-
if library_name not in returned_values[i]:
|
| 156 |
-
returned_values[i][library_name] = None
|
| 157 |
|
| 158 |
returned_values = collections.OrderedDict(sorted(returned_values.items()))
|
|
|
|
| 159 |
output = {l: [k[l] for k in returned_values.values()][::-1] for l in library_names}
|
| 160 |
output['day'] = list(returned_values.keys())[::-1]
|
| 161 |
|
|
|
|
|
|
|
|
|
|
| 162 |
self.send_response(200)
|
| 163 |
self.send_header("Content-Type", "application/json")
|
| 164 |
self.end_headers()
|
|
|
|
| 6 |
from urllib.parse import parse_qs, urlparse
|
| 7 |
|
| 8 |
from huggingface_hub import list_datasets, set_access_token, HfFolder
|
| 9 |
+
from datasets import load_dataset, DatasetDict, Dataset
|
| 10 |
import numpy as np
|
| 11 |
|
| 12 |
HF_TOKEN = os.environ['HF_TOKEN']
|
|
|
|
| 20 |
"pip": load_dataset("open-source-metrics/pip").sort('day')
|
| 21 |
}
|
| 22 |
|
| 23 |
+
val = 0
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def _range(e):
|
| 27 |
+
global val
|
| 28 |
+
e['range'] = val
|
| 29 |
+
val += 1
|
| 30 |
+
return e
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
stars = {}
|
| 34 |
+
for k, v in datasets['stars'].items():
|
| 35 |
+
stars[k] = v.map(_range)
|
| 36 |
+
val = 0
|
| 37 |
+
|
| 38 |
+
issues = {}
|
| 39 |
+
for k, v in datasets['issues'].items():
|
| 40 |
+
issues[k] = v.map(_range)
|
| 41 |
+
val = 0
|
| 42 |
+
|
| 43 |
+
datasets['stars'] = DatasetDict(**stars)
|
| 44 |
+
datasets['issues'] = DatasetDict(**issues)
|
| 45 |
+
|
| 46 |
+
|
| 47 |
# datasets = {
|
| 48 |
# k1: DatasetDict({
|
| 49 |
# k2: v2.select(range(0, len(v2), max(1, int(len(v2) / 1000)))) for k2, v2 in v1.items()
|
|
|
|
| 51 |
# }
|
| 52 |
|
| 53 |
|
| 54 |
+
def link_values(library_names, returned_values):
|
| 55 |
+
previous_values = {library_name: None for library_name in library_names}
|
| 56 |
+
for library_name in library_names:
|
| 57 |
+
for i in returned_values.keys():
|
| 58 |
+
if library_name not in returned_values[i]:
|
| 59 |
+
returned_values[i][library_name] = previous_values[library_name]
|
| 60 |
+
else:
|
| 61 |
+
previous_values[library_name] = returned_values[i][library_name]
|
| 62 |
+
|
| 63 |
+
return returned_values
|
| 64 |
+
|
| 65 |
+
|
| 66 |
def running_mean(x, N, total_length=-1):
|
| 67 |
cumsum = np.cumsum(np.insert(x, 0, 0))
|
| 68 |
to_pad = max(total_length - len(cumsum), 0)
|
|
|
|
| 79 |
|
| 80 |
if self.path.startswith("/initialize"):
|
| 81 |
dataset_keys = {k: set(v.keys()) for k, v in datasets.items()}
|
|
|
|
| 82 |
dataset_with_most_splits = max([d for d in dataset_keys.values()], key=len)
|
| 83 |
warnings = []
|
| 84 |
|
|
|
|
| 103 |
library_names = query.get("input", None)[0]
|
| 104 |
library_names = library_names.split(',')
|
| 105 |
|
| 106 |
+
if 'Cumulated' in library_names:
|
| 107 |
+
dataset_keys = {k: set(v.keys()) for k, v in datasets.items()}
|
| 108 |
+
dataset_with_most_splits = max([d for d in dataset_keys.values()], key=len)
|
| 109 |
+
library_names = list(dataset_with_most_splits)
|
| 110 |
+
|
| 111 |
+
returned_values = {}
|
| 112 |
+
for library_name in library_names:
|
| 113 |
+
for i in datasets['pip'][library_name]:
|
| 114 |
+
if i['day'] in returned_values:
|
| 115 |
+
returned_values[i['day']]['Cumulated'] += i['num_downloads']
|
| 116 |
+
else:
|
| 117 |
+
returned_values[i['day']] = {'Cumulated': i['num_downloads']}
|
| 118 |
+
|
| 119 |
+
library_names = ['Cumulated']
|
| 120 |
+
|
| 121 |
+
else:
|
| 122 |
+
returned_values = {}
|
| 123 |
+
for library_name in library_names:
|
| 124 |
+
for i in datasets['pip'][library_name]:
|
| 125 |
+
if i['day'] in returned_values:
|
| 126 |
+
returned_values[i['day']][library_name] = i['num_downloads']
|
| 127 |
+
else:
|
| 128 |
+
returned_values[i['day']] = {library_name: i['num_downloads']}
|
| 129 |
+
|
| 130 |
+
for library_name in library_names:
|
| 131 |
+
for i in returned_values.keys():
|
| 132 |
+
if library_name not in returned_values[i]:
|
| 133 |
+
returned_values[i][library_name] = None
|
| 134 |
|
| 135 |
returned_values = collections.OrderedDict(sorted(returned_values.items()))
|
| 136 |
output = {l: [k[l] for k in returned_values.values()] for l in library_names}
|
|
|
|
| 156 |
for library_name in library_names:
|
| 157 |
dataset = dataset_dict[library_name]
|
| 158 |
|
|
|
|
| 159 |
for i in dataset:
|
|
|
|
| 160 |
if i['dates'] in returned_values:
|
| 161 |
+
returned_values[i['dates']][library_name] = i['range']
|
| 162 |
else:
|
| 163 |
+
returned_values[i['dates']] = {library_name: i['range']}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
|
| 165 |
returned_values = collections.OrderedDict(sorted(returned_values.items()))
|
| 166 |
+
returned_values = link_values(library_names, returned_values)
|
| 167 |
output = {l: [k[l] for k in returned_values.values()][::-1] for l in library_names}
|
| 168 |
output['day'] = list(returned_values.keys())[::-1]
|
| 169 |
|
| 170 |
+
# Trim down to a smaller number of points.
|
| 171 |
+
output = {k: [v for i, v in enumerate(value) if i % int(len(value) / 100) == 0] for k, value in output.items()}
|
| 172 |
+
|
| 173 |
self.send_response(200)
|
| 174 |
self.send_header("Content-Type", "application/json")
|
| 175 |
self.end_headers()
|
|
|
|
| 190 |
for library_name in library_names:
|
| 191 |
dataset = dataset_dict[library_name]
|
| 192 |
|
| 193 |
+
for i in dataset:
|
|
|
|
|
|
|
| 194 |
if i['dates'] in returned_values:
|
| 195 |
+
returned_values[i['dates']][library_name] = i['range']
|
| 196 |
else:
|
| 197 |
+
returned_values[i['dates']] = {library_name: i['range']}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
|
| 199 |
returned_values = collections.OrderedDict(sorted(returned_values.items()))
|
| 200 |
+
returned_values = link_values(library_names, returned_values)
|
| 201 |
output = {l: [k[l] for k in returned_values.values()][::-1] for l in library_names}
|
| 202 |
output['day'] = list(returned_values.keys())[::-1]
|
| 203 |
|
| 204 |
+
# Trim down to a smaller number of points.
|
| 205 |
+
output = {k: [v for i, v in enumerate(value) if i % int(len(value) / 100) == 0] for k, value in output.items()}
|
| 206 |
+
|
| 207 |
self.send_response(200)
|
| 208 |
self.send_header("Content-Type", "application/json")
|
| 209 |
self.end_headers()
|
index.js
CHANGED
|
@@ -41,6 +41,7 @@ const createButton = (title, libraries, methods) => {
|
|
| 41 |
const initialize = async () => {
|
| 42 |
const inferResponse = await fetch(`initialize`);
|
| 43 |
const inferJson = await inferResponse.json();
|
|
|
|
| 44 |
// const graphsDiv = document.getElementsByClassName('graphs')[0];
|
| 45 |
const librarySelector = document.getElementById('library-selector');
|
| 46 |
const graphSelector = document.getElementById('graph-selector');
|
|
@@ -62,7 +63,11 @@ const initialize = async () => {
|
|
| 62 |
|
| 63 |
const checkBoxLabel = document.createElement('label');
|
| 64 |
const labelSpan = document.createElement('span')
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
checkBoxLabel.appendChild(checkBox)
|
| 67 |
checkBoxLabel.appendChild(labelSpan)
|
| 68 |
|
|
|
|
| 41 |
const initialize = async () => {
|
| 42 |
const inferResponse = await fetch(`initialize`);
|
| 43 |
const inferJson = await inferResponse.json();
|
| 44 |
+
inferJson.push('Cumulated')
|
| 45 |
// const graphsDiv = document.getElementsByClassName('graphs')[0];
|
| 46 |
const librarySelector = document.getElementById('library-selector');
|
| 47 |
const graphSelector = document.getElementById('graph-selector');
|
|
|
|
| 63 |
|
| 64 |
const checkBoxLabel = document.createElement('label');
|
| 65 |
const labelSpan = document.createElement('span')
|
| 66 |
+
|
| 67 |
+
if (element == 'Cumulated')
|
| 68 |
+
labelSpan.textContent = "Cumulated - Only works for pip installs, will crash otherwise."
|
| 69 |
+
else
|
| 70 |
+
labelSpan.textContent = element.charAt(0).toUpperCase() + element.slice(1)
|
| 71 |
checkBoxLabel.appendChild(checkBox)
|
| 72 |
checkBoxLabel.appendChild(labelSpan)
|
| 73 |
|