Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
[Feature] Add name filtering
Browse files
app.py
CHANGED
|
@@ -51,6 +51,11 @@ with gr.Blocks(title="Open VLM Leaderboard", head=head_style) as demo:
|
|
| 51 |
|
| 52 |
headers = ['Rank'] + check_box['essential'] + checkbox_group.value
|
| 53 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
model_size = gr.CheckboxGroup(
|
| 55 |
choices=MODEL_SIZE,
|
| 56 |
value=MODEL_SIZE,
|
|
@@ -71,7 +76,7 @@ with gr.Blocks(title="Open VLM Leaderboard", head=head_style) as demo:
|
|
| 71 |
wrap=True,
|
| 72 |
visible=True)
|
| 73 |
|
| 74 |
-
def filter_df(fields, model_size, model_type):
|
| 75 |
filter_list = ['Avg Score', 'Avg Rank', 'OpenSource']
|
| 76 |
headers = ['Rank'] + check_box['essential'] + fields
|
| 77 |
|
|
@@ -86,6 +91,15 @@ with gr.Blocks(title="Open VLM Leaderboard", head=head_style) as demo:
|
|
| 86 |
df = df[df['flag']]
|
| 87 |
df.pop('flag')
|
| 88 |
df['Rank'] = list(range(1, len(df) + 1))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
comp = gr.components.DataFrame(
|
| 91 |
value=df[headers],
|
|
@@ -97,7 +111,8 @@ with gr.Blocks(title="Open VLM Leaderboard", head=head_style) as demo:
|
|
| 97 |
return comp
|
| 98 |
|
| 99 |
for cbox in [checkbox_group, model_size, model_type]:
|
| 100 |
-
cbox.change(fn=filter_df, inputs=[checkbox_group, model_size, model_type], outputs=data_component)
|
|
|
|
| 101 |
|
| 102 |
with gr.TabItem('π About', elem_id='about', id=1):
|
| 103 |
gr.Markdown(urlopen(VLMEVALKIT_README).read().decode())
|
|
@@ -122,6 +137,11 @@ with gr.Blocks(title="Open VLM Leaderboard", head=head_style) as demo:
|
|
| 122 |
s.table['Rank'] = list(range(1, len(s.table) + 1))
|
| 123 |
|
| 124 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
s.model_size = gr.CheckboxGroup(
|
| 126 |
choices=MODEL_SIZE,
|
| 127 |
value=MODEL_SIZE,
|
|
@@ -143,7 +163,7 @@ with gr.Blocks(title="Open VLM Leaderboard", head=head_style) as demo:
|
|
| 143 |
visible=True)
|
| 144 |
s.dataset = gr.Textbox(value=dataset, label=dataset, visible=False)
|
| 145 |
|
| 146 |
-
def filter_df_l2(dataset_name, fields, model_size, model_type):
|
| 147 |
s = structs[DATASETS.index(dataset_name)]
|
| 148 |
headers = ['Rank'] + s.check_box['essential'] + fields
|
| 149 |
df = cp.deepcopy(s.table)
|
|
@@ -155,6 +175,15 @@ with gr.Blocks(title="Open VLM Leaderboard", head=head_style) as demo:
|
|
| 155 |
df = df[df['flag']]
|
| 156 |
df.pop('flag')
|
| 157 |
df['Rank'] = list(range(1, len(df) + 1))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
|
| 159 |
comp = gr.components.DataFrame(
|
| 160 |
value=df[headers],
|
|
@@ -168,8 +197,12 @@ with gr.Blocks(title="Open VLM Leaderboard", head=head_style) as demo:
|
|
| 168 |
for cbox in [s.checkbox_group, s.model_size, s.model_type]:
|
| 169 |
cbox.change(
|
| 170 |
fn=filter_df_l2,
|
| 171 |
-
inputs=[s.dataset, s.checkbox_group, s.model_size, s.model_type],
|
| 172 |
outputs=s.data_component)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
|
| 174 |
with gr.Row():
|
| 175 |
with gr.Accordion('Citation', open=False):
|
|
|
|
| 51 |
|
| 52 |
headers = ['Rank'] + check_box['essential'] + checkbox_group.value
|
| 53 |
with gr.Row():
|
| 54 |
+
model_name = gr.Textbox(
|
| 55 |
+
value='Input the Model Name (fuzzy, case insensitive)',
|
| 56 |
+
label='Model Name',
|
| 57 |
+
interactive=True,
|
| 58 |
+
visible=True)
|
| 59 |
model_size = gr.CheckboxGroup(
|
| 60 |
choices=MODEL_SIZE,
|
| 61 |
value=MODEL_SIZE,
|
|
|
|
| 76 |
wrap=True,
|
| 77 |
visible=True)
|
| 78 |
|
| 79 |
+
def filter_df(fields, model_name, model_size, model_type):
|
| 80 |
filter_list = ['Avg Score', 'Avg Rank', 'OpenSource']
|
| 81 |
headers = ['Rank'] + check_box['essential'] + fields
|
| 82 |
|
|
|
|
| 91 |
df = df[df['flag']]
|
| 92 |
df.pop('flag')
|
| 93 |
df['Rank'] = list(range(1, len(df) + 1))
|
| 94 |
+
default_val = 'Input the Model Name (fuzzy, case insensitive)'
|
| 95 |
+
if model_name != default_val:
|
| 96 |
+
print(model_name)
|
| 97 |
+
model_name = model_name.lower()
|
| 98 |
+
method_names = [x.split('</a>')[0].split('>')[-1].lower() for x in df['Method']]
|
| 99 |
+
flag = [model_name in name for name in method_names]
|
| 100 |
+
df['TEMP_FLAG'] = flag
|
| 101 |
+
df = df[df['TEMP_FLAG'] == True]
|
| 102 |
+
df.pop('TEMP_FLAG')
|
| 103 |
|
| 104 |
comp = gr.components.DataFrame(
|
| 105 |
value=df[headers],
|
|
|
|
| 111 |
return comp
|
| 112 |
|
| 113 |
for cbox in [checkbox_group, model_size, model_type]:
|
| 114 |
+
cbox.change(fn=filter_df, inputs=[checkbox_group, model_name, model_size, model_type], outputs=data_component)
|
| 115 |
+
model_name.submit(fn=filter_df, inputs=[checkbox_group, model_name, model_size, model_type], outputs=data_component)
|
| 116 |
|
| 117 |
with gr.TabItem('π About', elem_id='about', id=1):
|
| 118 |
gr.Markdown(urlopen(VLMEVALKIT_README).read().decode())
|
|
|
|
| 137 |
s.table['Rank'] = list(range(1, len(s.table) + 1))
|
| 138 |
|
| 139 |
with gr.Row():
|
| 140 |
+
s.model_name = gr.Textbox(
|
| 141 |
+
value='Input the Model Name (fuzzy, case insensitive)',
|
| 142 |
+
label='Model Name',
|
| 143 |
+
interactive=True,
|
| 144 |
+
visible=True)
|
| 145 |
s.model_size = gr.CheckboxGroup(
|
| 146 |
choices=MODEL_SIZE,
|
| 147 |
value=MODEL_SIZE,
|
|
|
|
| 163 |
visible=True)
|
| 164 |
s.dataset = gr.Textbox(value=dataset, label=dataset, visible=False)
|
| 165 |
|
| 166 |
+
def filter_df_l2(dataset_name, fields, model_name, model_size, model_type):
|
| 167 |
s = structs[DATASETS.index(dataset_name)]
|
| 168 |
headers = ['Rank'] + s.check_box['essential'] + fields
|
| 169 |
df = cp.deepcopy(s.table)
|
|
|
|
| 175 |
df = df[df['flag']]
|
| 176 |
df.pop('flag')
|
| 177 |
df['Rank'] = list(range(1, len(df) + 1))
|
| 178 |
+
default_val = 'Input the Model Name (fuzzy, case insensitive)'
|
| 179 |
+
if model_name != default_val:
|
| 180 |
+
print(model_name)
|
| 181 |
+
model_name = model_name.lower()
|
| 182 |
+
method_names = [x.split('</a>')[0].split('>')[-1].lower() for x in df['Method']]
|
| 183 |
+
flag = [model_name in name for name in method_names]
|
| 184 |
+
df['TEMP_FLAG'] = flag
|
| 185 |
+
df = df[df['TEMP_FLAG'] == True]
|
| 186 |
+
df.pop('TEMP_FLAG')
|
| 187 |
|
| 188 |
comp = gr.components.DataFrame(
|
| 189 |
value=df[headers],
|
|
|
|
| 197 |
for cbox in [s.checkbox_group, s.model_size, s.model_type]:
|
| 198 |
cbox.change(
|
| 199 |
fn=filter_df_l2,
|
| 200 |
+
inputs=[s.dataset, s.checkbox_group, s.model_name, s.model_size, s.model_type],
|
| 201 |
outputs=s.data_component)
|
| 202 |
+
s.model_name.submit(
|
| 203 |
+
fn=filter_df_l2,
|
| 204 |
+
inputs=[s.dataset, s.checkbox_group, s.model_name, s.model_size, s.model_type],
|
| 205 |
+
outputs=s.data_component)
|
| 206 |
|
| 207 |
with gr.Row():
|
| 208 |
with gr.Accordion('Citation', open=False):
|