File size: 8,676 Bytes
c708975
 
 
 
 
 
 
 
 
ca25c6f
c708975
ca25c6f
 
 
 
653989f
ca25c6f
 
3288843
 
 
47afef3
 
 
653989f
ca25c6f
 
653989f
 
 
 
 
ca25c6f
653989f
 
ca25c6f
 
653989f
 
c708975
653989f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eef3091
 
0548301
eef3091
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0548301
eef3091
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0548301
eef3091
 
 
 
 
 
0548301
eef3091
 
 
 
 
 
 
 
653989f
 
 
 
 
 
 
c708975
 
 
 
 
 
 
ca25c6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0548301
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca25c6f
 
 
 
 
 
 
653989f
ca25c6f
3288843
 
 
 
 
ca25c6f
 
 
 
 
 
 
 
 
 
 
 
 
653989f
ca25c6f
 
3288843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca25c6f
653989f
ca25c6f
653989f
ca25c6f
 
 
 
 
 
 
 
 
 
c708975
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import random
from pathlib import Path

import gradio as gr
import pandas as pd
from gradio_leaderboard import Leaderboard, SelectColumns, SearchColumns

abs_path = Path(__file__).parent

df_core = pd.read_csv("opensci-ref-table.csv")

df_core.drop("#Tokens", axis=1, inplace=True)
df_core.drop("AVG", axis=1, inplace=True)
benchmarks_core = df_core.columns[1:]
df_core["Average โฌ†๏ธ"] = df_core.loc[:, benchmarks_core].mean(axis=1)
df_core.sort_values(by="Average โฌ†๏ธ", ascending=False, inplace=True)

df_instruction_tuning = pd.read_csv("results_instruction_tuning.csv.zip")
df_instruction_tuning = df_instruction_tuning[
    ~df_instruction_tuning.model_B.str.contains("12b")
]
df_instruction_tuning.model_B = df_instruction_tuning.model_B.apply(
    lambda s: s.split("/")[-1]
)
df_instruction_tuning_pivot = df_instruction_tuning.pivot_table(
    index="model_B", columns="benchmark", values="preference"
)
df_instruction_tuning_pivot.index.rename("Model", inplace=True)
df_instruction_tuning_pivot.reset_index(drop=False, inplace=True)
df_instruction_tuning_pivot.columns = [
    x.capitalize() for x in df_instruction_tuning_pivot.columns
]
# first column is model
df_instruction_tuning_pivot["Average โฌ†๏ธ"] = df_instruction_tuning_pivot.loc[
    :, df_instruction_tuning_pivot.columns[1:]
].mean(axis=1)
# df_instruction_tuning.drop("benchmark", axis=1, inplace=True)
df_instruction_tuning_pivot.sort_values(by="Average โฌ†๏ธ", ascending=False, inplace=True)


df_mah_pivot = df_instruction_tuning[
    df_instruction_tuning.benchmark == "m-arena-hard-EU"
].copy()
df_mah_pivot["lang"] = df_instruction_tuning.instruction_index.apply(
    lambda s: s.split("-")[-1]
)

df_mah_pivot = df_mah_pivot.pivot_table(
    index="model_B", columns="lang", values="preference"
)
df_mah_pivot["Average โฌ†๏ธ"] = df_mah_pivot.mean(axis=1)
df_mah_pivot.sort_values(by="Average โฌ†๏ธ", ascending=False, inplace=True)
df_mah_pivot.index.rename("Model", inplace=True)
df_mah_pivot.reset_index(drop=False, inplace=True)

df_eval = pd.read_csv("multilingual_results.csv")


def map_task_to_group(task: str) -> str | None:
    if task == "xcopa":
        return "XCOPA"
    if task == "xstorycloze":
        return "XStoryCloze"
    if task == "xwinograd":
        return "XWinograd"
    if task.startswith("include_base_44_"):
        return "INCLUDE"
    if task.startswith("belebele_"):
        return "Belebele"
    if task.startswith("global_mmlu_full_"):
        return "Global MMLU"
    return None


df_eval["group"] = df_eval.task.apply(map_task_to_group)
df_eval_grouped = df_eval[df_eval["group"].notna()].copy()
df_eval_grouped["Model"] = df_eval_grouped.model_name.apply(lambda s: s.split("/")[-1])
df_multilingual_pivot = df_eval_grouped.pivot_table(
    index="Model", columns="group", values="performance", aggfunc="mean"
)
df_multilingual_pivot["Average โฌ†๏ธ"] = df_multilingual_pivot.mean(axis=1)
df_multilingual_pivot.sort_values(by="Average โฌ†๏ธ", ascending=False, inplace=True)
df_multilingual_pivot.index.rename("Model", inplace=True)
df_multilingual_pivot.reset_index(drop=False, inplace=True)

# Determine display names for groups including n_shot when unique
group_nshot = (
    df_eval_grouped.groupby("group")["n_shot"]
    .agg(lambda s: s.iloc[0] if s.nunique() == 1 else "mixed")
    .to_dict()
)


def display_name(group: str) -> str:
    label = group_nshot.get(group, "unknown")
    if label == "mixed" or label == "unknown" or label == "unknown":
        return f"{group} [mixed]" if label == "mixed" else f"{group} [unknown]"
    return f"{group} [{label}]"


# Build a renamed version for display, preserving Model and Average columns
display_columns_map = {
    col: display_name(col)
    for col in df_multilingual_pivot.columns
    if col not in ["Model", "Average โฌ†๏ธ"]
}
df_multilingual_display_all = df_multilingual_pivot.rename(columns=display_columns_map)

cols = [
    #'Llama-3.1-8B',
    "Llama-3.1-Tulu-3-8B-SFT",
    "Llama-3.2-3B-Instruct",
    "Llama-3.1-Tulu-3-8B-DPO",
    "Apertus-8B-Instruct-2509",
]

with gr.Blocks() as demo:
    gr.Markdown(
        """
    # ๐Ÿฅ‡ OpenEuroLLM Leaderboard ๐Ÿ‡ช๐Ÿ‡บ
    """
    )

    with gr.Tabs():
        with gr.Tab("English Core ๐Ÿด๓ ง๓ ข๓ ฅ๓ ฎ๓ ง๓ ฟ๐Ÿ‡บ๐Ÿ‡ธ"):
            Leaderboard(
                value=df_core.round(2),
                select_columns=SelectColumns(
                    default_selection=list(df_core.columns),
                    cant_deselect=["Model"],
                    label="Select Columns to Display:",
                ),
                search_columns=SearchColumns(
                    primary_column="Model",
                    label="Filter a model",
                    secondary_columns=[],
                ),
            )

        with gr.Tab("Multilingual evaluations ๐ŸŒ"):
            gr.Markdown(
                """
            Aggregated multilingual performance by task group (mean across languages when applicable).
            """
            )
            # Order columns: Model, groups..., Average
            raw_group_columns = [
                col
                for col in [
                    "INCLUDE",
                    "Belebele",
                    "Global MMLU",
                    "XCOPA",
                    "XStoryCloze",
                    "XWinograd",
                ]
                if col in df_multilingual_pivot.columns
            ]
            display_group_columns = [
                display_columns_map[col] for col in raw_group_columns
            ]
            ordered_columns = ["Model", *display_group_columns, "Average โฌ†๏ธ"]
            df_multilingual_display = df_multilingual_display_all.loc[
                :, ordered_columns
            ]
            Leaderboard(
                value=df_multilingual_display.round(2),
                select_columns=SelectColumns(
                    default_selection=list(df_multilingual_display.columns),
                    cant_deselect=["Model"],
                    label="Select Columns to Display:",
                ),
                search_columns=SearchColumns(
                    primary_column="Model",
                    label="Filter a model",
                    secondary_columns=[],
                ),
            )

        with gr.Tab("Instruction-tuning ๐ŸŽฏ๓ ง๓ ข๓ ฅ๐Ÿด๓ ง๓ ข๓ ฅ๓ ฎ๓ ง๓ ฟ"):
            gr.Markdown(
                """
            Winrate against Llama-3.1-8B-Instruct using Llama-3.1-70B-Instruct as the LLM-judge. 
            """
            )
            Leaderboard(
                value=df_instruction_tuning_pivot.round(2),
                select_columns=SelectColumns(
                    # default_selection=[
                    #     col
                    #     for col in df_instruction_tuning_pivot.columns
                    #     if not "-eu" in col
                    # ],
                    cant_deselect=["Model"],
                    label="Select Columns to Display:",
                ),
                search_columns=SearchColumns(
                    primary_column="Model",
                    label="Filter a model",
                    secondary_columns=[],
                ),
            )

        with gr.Tab("Instruction-tuning multi-lingual ๐ŸŽฏ๐Ÿ‡ช๐Ÿ‡บ"):
            gr.Markdown(
                """
            Winrate on m-Arena-Hard instructions against Llama-3.1-8B-Instruct using Llama-3.1-70B-Instruct as the LLM-judge. 
            """
            )
            language_flags = {
                "cs": "๐Ÿ‡จ๐Ÿ‡ฟ",
                "de": "๐Ÿ‡ฉ๐Ÿ‡ช",
                "el": "๐Ÿ‡ฌ๐Ÿ‡ท",
                "en": "๐Ÿ‡ฌ๐Ÿ‡ง",
                "es": "๐Ÿ‡ช๐Ÿ‡ธ",
                "fr": "๐Ÿ‡ซ๐Ÿ‡ท",
                "it": "๐Ÿ‡ฎ๐Ÿ‡น",
                "nl": "๐Ÿ‡ณ๐Ÿ‡ฑ",
                "pl": "๐Ÿ‡ต๐Ÿ‡ฑ",
                "pt": "๐Ÿ‡ต๐Ÿ‡น",
                "ro": "๐Ÿ‡ท๐Ÿ‡ด",
                "uk": "๐Ÿ‡บ๐Ÿ‡ฆ",
            }
            df_mah_pivot.columns = [
                f"{x} {language_flags[x]}" if x in language_flags else x
                for x in df_mah_pivot.columns
            ]
            Leaderboard(
                value=df_mah_pivot.round(2),
                select_columns=SelectColumns(
                    default_selection=list(df_mah_pivot.columns),
                    cant_deselect=["Model"],
                    label="Select Columns to Display:",
                ),
                search_columns=SearchColumns(
                    primary_column="Model",
                    label="Filter a model",
                    secondary_columns=[],
                ),
            )


if __name__ == "__main__":
    demo.launch()