Spaces:
Running
Running
File size: 8,676 Bytes
c708975 ca25c6f c708975 ca25c6f 653989f ca25c6f 3288843 47afef3 653989f ca25c6f 653989f ca25c6f 653989f ca25c6f 653989f c708975 653989f eef3091 0548301 eef3091 0548301 eef3091 0548301 eef3091 0548301 eef3091 653989f c708975 ca25c6f 0548301 ca25c6f 653989f ca25c6f 3288843 ca25c6f 653989f ca25c6f 3288843 ca25c6f 653989f ca25c6f 653989f ca25c6f c708975 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import random
from pathlib import Path
import gradio as gr
import pandas as pd
from gradio_leaderboard import Leaderboard, SelectColumns, SearchColumns
abs_path = Path(__file__).parent
df_core = pd.read_csv("opensci-ref-table.csv")
df_core.drop("#Tokens", axis=1, inplace=True)
df_core.drop("AVG", axis=1, inplace=True)
benchmarks_core = df_core.columns[1:]
df_core["Average โฌ๏ธ"] = df_core.loc[:, benchmarks_core].mean(axis=1)
df_core.sort_values(by="Average โฌ๏ธ", ascending=False, inplace=True)
df_instruction_tuning = pd.read_csv("results_instruction_tuning.csv.zip")
df_instruction_tuning = df_instruction_tuning[
~df_instruction_tuning.model_B.str.contains("12b")
]
df_instruction_tuning.model_B = df_instruction_tuning.model_B.apply(
lambda s: s.split("/")[-1]
)
df_instruction_tuning_pivot = df_instruction_tuning.pivot_table(
index="model_B", columns="benchmark", values="preference"
)
df_instruction_tuning_pivot.index.rename("Model", inplace=True)
df_instruction_tuning_pivot.reset_index(drop=False, inplace=True)
df_instruction_tuning_pivot.columns = [
x.capitalize() for x in df_instruction_tuning_pivot.columns
]
# first column is model
df_instruction_tuning_pivot["Average โฌ๏ธ"] = df_instruction_tuning_pivot.loc[
:, df_instruction_tuning_pivot.columns[1:]
].mean(axis=1)
# df_instruction_tuning.drop("benchmark", axis=1, inplace=True)
df_instruction_tuning_pivot.sort_values(by="Average โฌ๏ธ", ascending=False, inplace=True)
df_mah_pivot = df_instruction_tuning[
df_instruction_tuning.benchmark == "m-arena-hard-EU"
].copy()
df_mah_pivot["lang"] = df_instruction_tuning.instruction_index.apply(
lambda s: s.split("-")[-1]
)
df_mah_pivot = df_mah_pivot.pivot_table(
index="model_B", columns="lang", values="preference"
)
df_mah_pivot["Average โฌ๏ธ"] = df_mah_pivot.mean(axis=1)
df_mah_pivot.sort_values(by="Average โฌ๏ธ", ascending=False, inplace=True)
df_mah_pivot.index.rename("Model", inplace=True)
df_mah_pivot.reset_index(drop=False, inplace=True)
df_eval = pd.read_csv("multilingual_results.csv")
def map_task_to_group(task: str) -> str | None:
if task == "xcopa":
return "XCOPA"
if task == "xstorycloze":
return "XStoryCloze"
if task == "xwinograd":
return "XWinograd"
if task.startswith("include_base_44_"):
return "INCLUDE"
if task.startswith("belebele_"):
return "Belebele"
if task.startswith("global_mmlu_full_"):
return "Global MMLU"
return None
df_eval["group"] = df_eval.task.apply(map_task_to_group)
df_eval_grouped = df_eval[df_eval["group"].notna()].copy()
df_eval_grouped["Model"] = df_eval_grouped.model_name.apply(lambda s: s.split("/")[-1])
df_multilingual_pivot = df_eval_grouped.pivot_table(
index="Model", columns="group", values="performance", aggfunc="mean"
)
df_multilingual_pivot["Average โฌ๏ธ"] = df_multilingual_pivot.mean(axis=1)
df_multilingual_pivot.sort_values(by="Average โฌ๏ธ", ascending=False, inplace=True)
df_multilingual_pivot.index.rename("Model", inplace=True)
df_multilingual_pivot.reset_index(drop=False, inplace=True)
# Determine display names for groups including n_shot when unique
group_nshot = (
df_eval_grouped.groupby("group")["n_shot"]
.agg(lambda s: s.iloc[0] if s.nunique() == 1 else "mixed")
.to_dict()
)
def display_name(group: str) -> str:
label = group_nshot.get(group, "unknown")
if label == "mixed" or label == "unknown" or label == "unknown":
return f"{group} [mixed]" if label == "mixed" else f"{group} [unknown]"
return f"{group} [{label}]"
# Build a renamed version for display, preserving Model and Average columns
display_columns_map = {
col: display_name(col)
for col in df_multilingual_pivot.columns
if col not in ["Model", "Average โฌ๏ธ"]
}
df_multilingual_display_all = df_multilingual_pivot.rename(columns=display_columns_map)
cols = [
#'Llama-3.1-8B',
"Llama-3.1-Tulu-3-8B-SFT",
"Llama-3.2-3B-Instruct",
"Llama-3.1-Tulu-3-8B-DPO",
"Apertus-8B-Instruct-2509",
]
with gr.Blocks() as demo:
gr.Markdown(
"""
# ๐ฅ OpenEuroLLM Leaderboard ๐ช๐บ
"""
)
with gr.Tabs():
with gr.Tab("English Core ๐ด๓ ง๓ ข๓ ฅ๓ ฎ๓ ง๓ ฟ๐บ๐ธ"):
Leaderboard(
value=df_core.round(2),
select_columns=SelectColumns(
default_selection=list(df_core.columns),
cant_deselect=["Model"],
label="Select Columns to Display:",
),
search_columns=SearchColumns(
primary_column="Model",
label="Filter a model",
secondary_columns=[],
),
)
with gr.Tab("Multilingual evaluations ๐"):
gr.Markdown(
"""
Aggregated multilingual performance by task group (mean across languages when applicable).
"""
)
# Order columns: Model, groups..., Average
raw_group_columns = [
col
for col in [
"INCLUDE",
"Belebele",
"Global MMLU",
"XCOPA",
"XStoryCloze",
"XWinograd",
]
if col in df_multilingual_pivot.columns
]
display_group_columns = [
display_columns_map[col] for col in raw_group_columns
]
ordered_columns = ["Model", *display_group_columns, "Average โฌ๏ธ"]
df_multilingual_display = df_multilingual_display_all.loc[
:, ordered_columns
]
Leaderboard(
value=df_multilingual_display.round(2),
select_columns=SelectColumns(
default_selection=list(df_multilingual_display.columns),
cant_deselect=["Model"],
label="Select Columns to Display:",
),
search_columns=SearchColumns(
primary_column="Model",
label="Filter a model",
secondary_columns=[],
),
)
with gr.Tab("Instruction-tuning ๐ฏ๓ ง๓ ข๓ ฅ๐ด๓ ง๓ ข๓ ฅ๓ ฎ๓ ง๓ ฟ"):
gr.Markdown(
"""
Winrate against Llama-3.1-8B-Instruct using Llama-3.1-70B-Instruct as the LLM-judge.
"""
)
Leaderboard(
value=df_instruction_tuning_pivot.round(2),
select_columns=SelectColumns(
# default_selection=[
# col
# for col in df_instruction_tuning_pivot.columns
# if not "-eu" in col
# ],
cant_deselect=["Model"],
label="Select Columns to Display:",
),
search_columns=SearchColumns(
primary_column="Model",
label="Filter a model",
secondary_columns=[],
),
)
with gr.Tab("Instruction-tuning multi-lingual ๐ฏ๐ช๐บ"):
gr.Markdown(
"""
Winrate on m-Arena-Hard instructions against Llama-3.1-8B-Instruct using Llama-3.1-70B-Instruct as the LLM-judge.
"""
)
language_flags = {
"cs": "๐จ๐ฟ",
"de": "๐ฉ๐ช",
"el": "๐ฌ๐ท",
"en": "๐ฌ๐ง",
"es": "๐ช๐ธ",
"fr": "๐ซ๐ท",
"it": "๐ฎ๐น",
"nl": "๐ณ๐ฑ",
"pl": "๐ต๐ฑ",
"pt": "๐ต๐น",
"ro": "๐ท๐ด",
"uk": "๐บ๐ฆ",
}
df_mah_pivot.columns = [
f"{x} {language_flags[x]}" if x in language_flags else x
for x in df_mah_pivot.columns
]
Leaderboard(
value=df_mah_pivot.round(2),
select_columns=SelectColumns(
default_selection=list(df_mah_pivot.columns),
cant_deselect=["Model"],
label="Select Columns to Display:",
),
search_columns=SearchColumns(
primary_column="Model",
label="Filter a model",
secondary_columns=[],
),
)
if __name__ == "__main__":
demo.launch()
|