orgoflu commited on
Commit
1623409
·
verified ·
1 Parent(s): 1e701ed

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +55 -0
app.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM, TextGenerationPipeline
3
+ import torch
4
+
5
+ MODEL_NAME = "openbmb/MiniCPM-V-4"
6
+
7
+ @gr.cache(allow_output_mutation=True)
8
+ def load_model():
9
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
10
+ model = AutoModelForCausalLM.from_pretrained(
11
+ MODEL_NAME,
12
+ torch_dtype=torch.float16,
13
+ device_map="auto",
14
+ trust_remote_code=True
15
+ )
16
+ pipeline = TextGenerationPipeline(
17
+ model=model,
18
+ tokenizer=tokenizer,
19
+ device=model.device.index if torch.cuda.is_available() else -1
20
+ )
21
+ return pipeline
22
+
23
+ def generate(prompt: str, max_length: int = 100, top_k: int = 50, top_p: float = 0.95):
24
+ pipe = load_model()
25
+ output = pipe(
26
+ prompt,
27
+ max_length=max_length,
28
+ do_sample=True,
29
+ top_k=top_k,
30
+ top_p=top_p,
31
+ num_return_sequences=1
32
+ )
33
+ return output[0]["generated_text"]
34
+
35
+ with gr.Blocks() as demo:
36
+ gr.Markdown("# MiniCPM-V-4 Text Generation Demo")
37
+
38
+ with gr.Row():
39
+ prompt_input = gr.Textbox(label="Prompt", placeholder="여기에 입력하세요...", lines=2)
40
+
41
+ with gr.Row():
42
+ max_len = gr.Slider(10, 512, value=100, step=10, label="Max Length")
43
+ topk = gr.Slider(1, 100, value=50, step=1, label="Top-k")
44
+ topp = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p")
45
+
46
+ generate_btn = gr.Button("Generate")
47
+ output_box = gr.Textbox(label="Generated Text", lines=5)
48
+
49
+ generate_btn.click(
50
+ fn=generate,
51
+ inputs=[prompt_input, max_len, topk, topp],
52
+ outputs=output_box
53
+ )
54
+
55
+ demo.launch()