Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,11 +1,12 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextGenerationPipeline
|
| 3 |
import torch
|
|
|
|
| 4 |
|
| 5 |
MODEL_NAME = "openbmb/MiniCPM-V-4"
|
| 6 |
|
| 7 |
-
@
|
| 8 |
-
def
|
| 9 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
| 10 |
model = AutoModelForCausalLM.from_pretrained(
|
| 11 |
MODEL_NAME,
|
|
@@ -13,15 +14,14 @@ def load_model():
|
|
| 13 |
device_map="auto",
|
| 14 |
trust_remote_code=True
|
| 15 |
)
|
| 16 |
-
|
| 17 |
model=model,
|
| 18 |
tokenizer=tokenizer,
|
| 19 |
device=model.device.index if torch.cuda.is_available() else -1
|
| 20 |
)
|
| 21 |
-
return pipeline
|
| 22 |
|
| 23 |
-
def generate(prompt: str, max_length: int
|
| 24 |
-
pipe =
|
| 25 |
output = pipe(
|
| 26 |
prompt,
|
| 27 |
max_length=max_length,
|
|
@@ -35,14 +35,10 @@ def generate(prompt: str, max_length: int = 100, top_k: int = 50, top_p: float =
|
|
| 35 |
with gr.Blocks() as demo:
|
| 36 |
gr.Markdown("# MiniCPM-V-4 Text Generation Demo")
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
max_len = gr.Slider(10, 512, value=100, step=10, label="Max Length")
|
| 43 |
-
topk = gr.Slider(1, 100, value=50, step=1, label="Top-k")
|
| 44 |
-
topp = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p")
|
| 45 |
-
|
| 46 |
generate_btn = gr.Button("Generate")
|
| 47 |
output_box = gr.Textbox(label="Generated Text", lines=5)
|
| 48 |
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextGenerationPipeline
|
| 3 |
import torch
|
| 4 |
+
from functools import lru_cache
|
| 5 |
|
| 6 |
MODEL_NAME = "openbmb/MiniCPM-V-4"
|
| 7 |
|
| 8 |
+
@lru_cache(maxsize=1)
|
| 9 |
+
def load_pipeline():
|
| 10 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
| 11 |
model = AutoModelForCausalLM.from_pretrained(
|
| 12 |
MODEL_NAME,
|
|
|
|
| 14 |
device_map="auto",
|
| 15 |
trust_remote_code=True
|
| 16 |
)
|
| 17 |
+
return TextGenerationPipeline(
|
| 18 |
model=model,
|
| 19 |
tokenizer=tokenizer,
|
| 20 |
device=model.device.index if torch.cuda.is_available() else -1
|
| 21 |
)
|
|
|
|
| 22 |
|
| 23 |
+
def generate(prompt: str, max_length: int, top_k: int, top_p: float):
|
| 24 |
+
pipe = load_pipeline()
|
| 25 |
output = pipe(
|
| 26 |
prompt,
|
| 27 |
max_length=max_length,
|
|
|
|
| 35 |
with gr.Blocks() as demo:
|
| 36 |
gr.Markdown("# MiniCPM-V-4 Text Generation Demo")
|
| 37 |
|
| 38 |
+
prompt_input = gr.Textbox(label="Prompt", lines=2, placeholder="์ฌ๊ธฐ์ ์
๋ ฅํ์ธ์...")
|
| 39 |
+
max_len = gr.Slider(10, 512, value=100, step=10, label="Max Length")
|
| 40 |
+
topk = gr.Slider(1, 100, value=50, step=1, label="Top-k")
|
| 41 |
+
topp = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
generate_btn = gr.Button("Generate")
|
| 43 |
output_box = gr.Textbox(label="Generated Text", lines=5)
|
| 44 |
|