Spaces:
Runtime error
Runtime error
| import torch | |
| import numpy as np | |
| import abc | |
| from typing import Optional, Union, Tuple, Dict | |
| import src.seq_aligner as seq_aligner | |
| class AttentionControl(abc.ABC): | |
| def step_callback(self, x_t): | |
| return x_t | |
| def between_steps(self): | |
| return | |
| def num_uncond_att_layers(self): | |
| return self.num_att_layers if self.low_resource else 0 | |
| def forward(self, attn, is_cross: bool, place_in_unet: str): | |
| raise NotImplementedError | |
| def __call__(self, attn, is_cross: bool, place_in_unet: str): | |
| if self.cur_att_layer >= self.num_uncond_att_layers: | |
| if self.low_resource: | |
| attn = self.forward(attn, is_cross, place_in_unet) | |
| else: | |
| h = attn.shape[0] | |
| attn[h // 2:] = self.forward(attn[h // 2:], is_cross, place_in_unet) | |
| self.cur_att_layer += 1 | |
| if self.cur_att_layer == self.num_att_layers + self.num_uncond_att_layers: | |
| self.cur_att_layer = 0 | |
| self.cur_step += 1 | |
| self.between_steps() | |
| return attn | |
| def reset(self): | |
| self.cur_step = 0 | |
| self.cur_att_layer = 0 | |
| def __init__(self, low_resource): | |
| self.cur_step = 0 | |
| self.num_att_layers = -1 | |
| self.cur_att_layer = 0 | |
| self.low_resource = low_resource | |
| class EmptyControl(AttentionControl): | |
| def forward(self, attn, is_cross: bool, place_in_unet: str): | |
| return attn | |
| class DummyController: | |
| def __call__(self, *args): | |
| return args[0] | |
| def __init__(self): | |
| self.num_att_layers = 0 | |
| class AttentionStore(AttentionControl): | |
| def get_empty_store(): | |
| return {"down_cross": [], "mid_cross": [], "up_cross": [], | |
| "down_self": [], "mid_self": [], "up_self": []} | |
| def forward(self, attn, is_cross: bool, place_in_unet: str): | |
| key = f"{place_in_unet}_{'cross' if is_cross else 'self'}" | |
| if attn.shape[1] <= 32 ** 2: # avoid memory overhead | |
| self.step_store[key].append(attn) | |
| return attn | |
| def between_steps(self): | |
| if len(self.attention_store) == 0: | |
| self.attention_store = self.step_store | |
| else: | |
| for key in self.attention_store: | |
| for i in range(len(self.attention_store[key])): | |
| self.attention_store[key][i] += self.step_store[key][i] | |
| self.step_store = self.get_empty_store() | |
| def get_average_attention(self): | |
| average_attention = {key: [item / self.cur_step for item in self.attention_store[key]] for key in | |
| self.attention_store} | |
| return average_attention | |
| def reset(self): | |
| super(AttentionStore, self).reset() | |
| self.step_store = self.get_empty_store() | |
| self.attention_store = {} | |
| def __init__(self, low_resource): | |
| super(AttentionStore, self).__init__(low_resource) | |
| self.step_store = self.get_empty_store() | |
| self.attention_store = {} | |
| class AttentionControlEdit(AttentionStore, abc.ABC): | |
| def step_callback(self, x_t): | |
| return x_t | |
| def replace_self_attention(self, attn_base, att_replace): | |
| if att_replace.shape[2] <= 16 ** 2: | |
| return attn_base.unsqueeze(0).expand(att_replace.shape[0], *attn_base.shape) | |
| else: | |
| return att_replace | |
| def replace_cross_attention(self, attn_base, att_replace): | |
| raise NotImplementedError | |
| def forward(self, attn, is_cross: bool, place_in_unet: str): | |
| super(AttentionControlEdit, self).forward(attn, is_cross, place_in_unet) | |
| if is_cross or (self.num_self_replace[0] <= self.cur_step < self.num_self_replace[1]): | |
| h = attn.shape[0] // (self.batch_size) | |
| attn = attn.reshape(self.batch_size, h, *attn.shape[1:]) | |
| attn_base, attn_repalce = attn[0], attn[1:] | |
| if is_cross: | |
| alpha_words = self.cross_replace_alpha[self.cur_step] | |
| attn_repalce_new = self.replace_cross_attention(attn_base, attn_repalce) * alpha_words + ( | |
| 1 - alpha_words) * attn_repalce | |
| attn[1:] = attn_repalce_new | |
| else: | |
| attn[1:] = self.replace_self_attention(attn_base, attn_repalce) | |
| attn = attn.reshape(self.batch_size * h, *attn.shape[2:]) | |
| return attn | |
| def __init__(self, prompts, tokenizer, device, low_resource, num_steps: int, | |
| cross_replace_steps: Union[float, Tuple[float, float], Dict[str, Tuple[float, float]]], | |
| self_replace_steps: Union[float, Tuple[float, float]]): | |
| super(AttentionControlEdit, self).__init__(low_resource) | |
| self.batch_size = len(prompts) | |
| self.tokenizer = tokenizer | |
| self.cross_replace_alpha = get_time_words_attention_alpha(prompts, num_steps, cross_replace_steps, | |
| self.tokenizer).to(device) | |
| if type(self_replace_steps) is float: | |
| self_replace_steps = 0, self_replace_steps | |
| self.num_self_replace = int(num_steps * self_replace_steps[0]), int(num_steps * self_replace_steps[1]) | |
| class AttentionReplace(AttentionControlEdit): | |
| def replace_cross_attention(self, attn_base, att_replace): | |
| return torch.einsum('hpw,bwn->bhpn', attn_base, self.mapper.to(attn_base.dtype)) | |
| def __init__(self, prompts, tokenizer, device, low_resource, num_steps: int, cross_replace_steps: float, self_replace_steps: float): | |
| super(AttentionReplace, self).__init__(prompts, tokenizer, device, low_resource, num_steps, cross_replace_steps, self_replace_steps) | |
| self.mapper = seq_aligner.get_replacement_mapper(prompts, self.tokenizer).to(device) | |
| def get_word_inds(text: str, word_place: int, tokenizer): | |
| split_text = text.split(" ") | |
| if type(word_place) is str: | |
| word_place = [i for i, word in enumerate(split_text) if word_place == word] | |
| elif type(word_place) is int: | |
| word_place = [word_place] | |
| out = [] | |
| if len(word_place) > 0: | |
| words_encode = [tokenizer.decode([item]).strip("#") for item in tokenizer.encode(text)][1:-1] | |
| cur_len, ptr = 0, 0 | |
| for i in range(len(words_encode)): | |
| cur_len += len(words_encode[i]) | |
| if ptr in word_place: | |
| out.append(i + 1) | |
| if cur_len >= len(split_text[ptr]): | |
| ptr += 1 | |
| cur_len = 0 | |
| return np.array(out) | |
| def update_alpha_time_word(alpha, bounds: Union[float, Tuple[float, float]], prompt_ind: int, word_inds: Optional[torch.Tensor]=None): | |
| if type(bounds) is float: | |
| bounds = 0, bounds | |
| start, end = int(bounds[0] * alpha.shape[0]), int(bounds[1] * alpha.shape[0]) | |
| if word_inds is None: | |
| word_inds = torch.arange(alpha.shape[2]) | |
| alpha[: start, prompt_ind, word_inds] = 0 | |
| alpha[start: end, prompt_ind, word_inds] = 1 | |
| alpha[end:, prompt_ind, word_inds] = 0 | |
| return alpha | |
| def get_time_words_attention_alpha(prompts, num_steps, cross_replace_steps: Union[float, Tuple[float, float], Dict[str, Tuple[float, float]]], | |
| tokenizer, max_num_words=77): | |
| if type(cross_replace_steps) is not dict: | |
| cross_replace_steps = {"default_": cross_replace_steps} | |
| if "default_" not in cross_replace_steps: | |
| cross_replace_steps["default_"] = (0., 1.) | |
| alpha_time_words = torch.zeros(num_steps + 1, len(prompts) - 1, max_num_words) | |
| for i in range(len(prompts) - 1): | |
| alpha_time_words = update_alpha_time_word(alpha_time_words, cross_replace_steps["default_"], | |
| i) | |
| for key, item in cross_replace_steps.items(): | |
| if key != "default_": | |
| inds = [get_word_inds(prompts[i], key, tokenizer) for i in range(1, len(prompts))] | |
| for i, ind in enumerate(inds): | |
| if len(ind) > 0: | |
| alpha_time_words = update_alpha_time_word(alpha_time_words, item, i, ind) | |
| alpha_time_words = alpha_time_words.reshape(num_steps + 1, len(prompts) - 1, 1, 1, max_num_words) # time, batch, heads, pixels, words | |
| return alpha_time_words |