File size: 14,720 Bytes
8d5a128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
from typing import Iterator, List, Tuple

import numpy as np
import torch
from diffusers import FlowMatchEulerDiscreteScheduler, FluxPipeline
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import retrieve_timesteps
from PIL import Image


@torch.no_grad()
def calculate_shift(
    image_seq_len: int,
    base_seq_len: int = 256,
    max_seq_len: int = 4096,
    base_shift: float = 0.5,
    max_shift: float = 1.16,
) -> float:
    m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
    b = base_shift - m * base_seq_len
    mu = image_seq_len * m + b
    return mu

@torch.no_grad()
def calc_v_flux(
    pipe: FluxPipeline, latents: torch.Tensor, prompt_embeds: torch.Tensor,
    pooled_prompt_embeds: torch.Tensor, guidance: torch.Tensor,
    text_ids: torch.Tensor, latent_image_ids: torch.Tensor, t: torch.Tensor,
) -> torch.Tensor:
    """
    Calculate the velocity (v) for FLUX.

    Args:
        pipe (FluxPipeline): The FLUX pipeline.
        latents (torch.Tensor): The latent tensor at the current timestep.
        prompt_embeds (torch.Tensor): The prompt embeddings.
        pooled_prompt_embeds (torch.Tensor): The pooled prompt embeddings.
        guidance (torch.Tensor): The guidance scale tensor.
        text_ids (torch.Tensor): The text token IDs.
        latent_image_ids (torch.Tensor): The latent image token IDs.
        t (torch.Tensor): The current timestep.
    Returns:
        torch.Tensor: The predicted noise (velocity).
    """
    timestep = t.expand(latents.shape[0])

    noise_pred = pipe.transformer(
        hidden_states=latents,
        timestep=timestep / 1000,
        guidance=guidance,
        encoder_hidden_states=prompt_embeds,
        txt_ids=text_ids,
        img_ids=latent_image_ids,
        pooled_projections=pooled_prompt_embeds,
        joint_attention_kwargs=None,
        return_dict=False,
    )[0]

    return noise_pred

@torch.no_grad()
def prep_input(
    pipe: FluxPipeline, scheduler: FlowMatchEulerDiscreteScheduler,
    T_steps: int, x0_src: torch.Tensor, src_prompt: str,
    src_guidance_scale: float,
) -> Tuple[
    torch.Tensor, torch.Tensor, torch.Tensor, int, int,
    torch.Tensor, torch.Tensor, torch.Tensor,
]:
    """
    Prepare the input tensors for the FLUX pipeline.

    Args:
        pipe (FluxPipeline): The FLUX pipeline.
        scheduler (FlowMatchEulerDiscreteScheduler): The scheduler for the diffusion process.
        T_steps (int): The total number of timesteps for the diffusion process.
        x0_src (torch.Tensor): The source latent tensor.
        src_prompt (str): The source text prompt.
        src_guidance_scale (float): The guidance scale for classifier-free guidance.
    Returns:
        Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int, int, torch.Tensor, torch.Tensor, torch.Tensor]:
            - Prepared source latent tensor.
            - Latent image token IDs.
            - Timesteps tensor for the diffusion process.
            - Original height of the input image.
            - Original width of the input image.
            - Source prompt embeddings.
            - Source pooled prompt embeddings.
            - Source text token IDs.
    """
    orig_height, orig_width = x0_src.shape[2] * pipe.vae_scale_factor, x0_src.shape[3] * pipe.vae_scale_factor
    num_channels_latents = pipe.transformer.config.in_channels // 4

    pipe.check_inputs(
        prompt=src_prompt,
        prompt_2=None,
        height=orig_height,
        width=orig_width,
        callback_on_step_end_tensor_inputs=None,
        max_sequence_length=512,
    )

    x0_src, latent_src_image_ids = pipe.prepare_latents(
        batch_size=x0_src.shape[0], num_channels_latents=num_channels_latents,
        height=orig_height, width=orig_width,
        dtype=x0_src.dtype, device=x0_src.device, generator=None, latents=x0_src,
    )
    x0_src = pipe._pack_latents(x0_src, x0_src.shape[0], num_channels_latents, x0_src.shape[2], x0_src.shape[3])

    sigmas = np.linspace(1.0, 1 / T_steps, T_steps)
    image_seq_len = x0_src.shape[1]
    mu = calculate_shift(
        image_seq_len,
        scheduler.config.base_image_seq_len,
        scheduler.config.max_image_seq_len,
        scheduler.config.base_shift,
        scheduler.config.max_shift,
    )
    timesteps, T_steps = retrieve_timesteps(
        scheduler,
        T_steps,
        x0_src.device,
        timesteps=None,
        sigmas=sigmas,
        mu=mu,
    )
    pipe._num_timesteps = len(timesteps)

    pipe._guidance_scale = src_guidance_scale
    (
        src_prompt_embeds,
        src_pooled_prompt_embeds,
        src_text_ids,
    ) = pipe.encode_prompt(
        prompt=src_prompt,
        prompt_2=None,
        device=x0_src.device,
    )

    return (
        x0_src, latent_src_image_ids, timesteps, orig_height, orig_width,
        src_prompt_embeds, src_pooled_prompt_embeds, src_text_ids
    )

# https://github.com/DSL-Lab/UniEdit-Flow
@torch.no_grad()
def uniinv(
    pipe: FluxPipeline, scheduler: FlowMatchEulerDiscreteScheduler,
    timesteps: torch.Tensor, n_start: int, x0_src: torch.Tensor,
    src_prompt_embeds: torch.Tensor, src_pooled_prompt_embeds: torch.Tensor,
    src_guidance: torch.Tensor, src_text_ids: torch.Tensor,
    latent_src_image_ids: torch.Tensor,
) -> torch.Tensor:
    """
    Perform the UniInv inversion process for FLUX.

    Args:
        pipe (FluxPipeline): The FLUX pipeline.
        scheduler (FlowMatchEulerDiscreteScheduler): The scheduler for the diffusion process.
        timesteps (torch.Tensor): The timesteps for the diffusion process.
        n_start (int): The number of initial timesteps to skip.
        x0_src (torch.Tensor): The source latent tensor.
        src_prompt_embeds (torch.Tensor): The source prompt embeddings.
        src_pooled_prompt_embeds (torch.Tensor): The source pooled prompt embeddings.
        src_guidance (torch.Tensor): The guidance scale tensor.
        src_text_ids (torch.Tensor): The source text token IDs.
        latent_src_image_ids (torch.Tensor): The latent image token IDs.
    Returns:
        torch.Tensor: The inverted latent tensor.
    """
    x_t = x0_src.clone()
    timesteps_inv = timesteps.flip(dims=(0,))[:-n_start] if n_start > 0 else timesteps.flip(dims=(0,))
    next_v = None
    for _i, t in enumerate(timesteps_inv):
        scheduler._init_step_index(t)
        t_i = scheduler.sigmas[scheduler.step_index]
        t_ip1 = scheduler.sigmas[scheduler.step_index + 1]
        dt = t_i - t_ip1

        if next_v is None:
            v_tar = calc_v_flux(
                pipe, latents=x_t, prompt_embeds=src_prompt_embeds,
                pooled_prompt_embeds=src_pooled_prompt_embeds, guidance=src_guidance,
                text_ids=src_text_ids, latent_image_ids=latent_src_image_ids, t=t_ip1 * 1000,
            )
        else:
            v_tar = next_v
        x_t = x_t.to(torch.float32)
        x_t_next = x_t + v_tar * dt
        x_t_next = x_t_next.to(pipe.dtype)

        v_tar_next = calc_v_flux(
            pipe, latents=x_t_next, prompt_embeds=src_prompt_embeds,
            pooled_prompt_embeds=src_pooled_prompt_embeds, guidance=src_guidance,
            text_ids=src_text_ids, latent_image_ids=latent_src_image_ids, t=t,
        )
        next_v = v_tar_next
        x_t = x_t + v_tar_next * dt
        x_t = x_t.to(pipe.dtype)

    return x_t

@torch.no_grad()
def initialization(
    pipe: FluxPipeline, scheduler: FlowMatchEulerDiscreteScheduler,
    T_steps: int, n_start: int, x0_src: torch.Tensor, src_prompt: str,
    src_guidance_scale: float,
) -> Tuple[
    torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, int, int,
    torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor,
]:
    """
    Initialize the inversion process by preparing the latent tensor and prompt embeddings, and performing UniInv.

    Args:
        pipe (FluxPipeline): The FLUX pipeline.
        scheduler (FlowMatchEulerDiscreteScheduler): The scheduler for the diffusion process.
        T_steps (int): The total number of timesteps for the diffusion process.
        n_start (int): The number of initial timesteps to skip.
        x0_src (torch.Tensor): The source latent tensor.
        src_prompt (str): The source text prompt.
        src_guidance_scale (float): The guidance scale for classifier-free guidance.
    Returns:
        Tuple[
            torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, int, int,
            torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor,
        ]:
            - The inverted latent tensor.
            - The source latent tensor.
            - The timesteps for the diffusion process.
            - The latent image token IDs.
            - The original height of the input image.
            - The original width of the input image.
            - The source prompt embeddings.
            - The source pooled prompt embeddings.
            - The source text token IDs.
            - The guidance scale tensor.
    """
    (
        x0_src, latent_src_image_ids, timesteps, orig_height, orig_width,
        src_prompt_embeds, src_pooled_prompt_embeds, src_text_ids
    ) = prep_input(pipe, scheduler, T_steps, x0_src, src_prompt, src_guidance_scale)

    # handle guidance
    if pipe.transformer.config.guidance_embeds:
        src_guidance = torch.tensor([src_guidance_scale], device=pipe.device)
        src_guidance = src_guidance.expand(x0_src.shape[0])
    else:
        src_guidance = None

    x_t = uniinv(
        pipe, scheduler, timesteps, n_start, x0_src,
        src_prompt_embeds, src_pooled_prompt_embeds, src_guidance,
        src_text_ids, latent_src_image_ids,
    )

    return (
        x_t, x0_src, timesteps, latent_src_image_ids, orig_height, orig_width,
    )

@torch.no_grad()
def flux_denoise(
    pipe: FluxPipeline, scheduler: FlowMatchEulerDiscreteScheduler,
    timesteps: torch.Tensor, n_start: int, x_t: torch.Tensor,
    prompt_embeds: torch.Tensor, pooled_prompt_embeds: torch.Tensor,
    guidance: torch.Tensor, text_ids: torch.Tensor,
    latent_image_ids: torch.Tensor,
) -> torch.Tensor:
    """
    Perform the denoising process for FLUX.

    Args:
        pipe (FluxPipeline): The FLUX pipeline.
        scheduler (FlowMatchEulerDiscreteScheduler): The scheduler for the diffusion process.
        timesteps (torch.Tensor): The timesteps for the diffusion process.
        n_start (int): The number of initial timesteps to skip.
        x_t (torch.Tensor): The latent tensor at the starting timestep.
        prompt_embeds (torch.Tensor): The prompt embeddings.
        pooled_prompt_embeds (torch.Tensor): The pooled prompt embeddings.
        guidance (torch.Tensor): The guidance scale tensor.
        text_ids (torch.Tensor): The text token IDs.
        latent_image_ids (torch.Tensor): The latent image token IDs.
    Returns:
        torch.Tensor: The denoised latent tensor.
    """
    f_xt = x_t.clone()
    for _i, t in enumerate(timesteps[n_start:]):
        scheduler._init_step_index(t)
        t_i = scheduler.sigmas[scheduler.step_index]
        t_im1 = scheduler.sigmas[scheduler.step_index + 1]
        dt = t_im1 - t_i

        v_tar = calc_v_flux(
            pipe, latents=f_xt, prompt_embeds=prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds, guidance=guidance,
            text_ids=text_ids, latent_image_ids=latent_image_ids, t=t,
        )
        f_xt = f_xt.to(torch.float32)
        f_xt = f_xt + v_tar * dt
        f_xt = f_xt.to(pipe.dtype)

    return f_xt

@torch.no_grad()
def flux_editing(
    pipe: FluxPipeline, scheduler: FlowMatchEulerDiscreteScheduler,
    T_steps: int, n_max: int, x0_src: torch.Tensor, src_prompt: str,
    tar_prompt: str, src_guidance_scale: float, tar_guidance_scale: float,
    flowopt_iterations: int, eta: float,
) -> Iterator[List[Tuple[Image.Image, str]]]:
    """
    Perform the editing process for FLUX using FlowOpt.

    Args:
        pipe (FluxPipeline): The FLUX pipeline.
        scheduler (FlowMatchEulerDiscreteScheduler): The scheduler for the diffusion process.
        T_steps (int): The total number of timesteps for the diffusion process.
        n_max (int): The maximum number of timesteps to consider.
        x0_src (torch.Tensor): The source latent tensor.
        src_prompt (str): The source text prompt.
        tar_prompt (str): The target text prompt for editing.
        src_guidance_scale (float): The guidance scale for the source prompt.
        tar_guidance_scale (float): The guidance scale for the target prompt.
        flowopt_iterations (int): The number of FlowOpt iterations to perform.
        eta (float): The step size for the FlowOpt update.
    Yields:
        Iterator[List[Tuple[Image.Image, str]]]: A list of tuples containing the generated images and their corresponding iteration labels.
    """
    n_start = T_steps - n_max
    (
        x_t, x0_src, timesteps, latent_src_image_ids, orig_height, orig_width,
    ) = initialization(
        pipe, scheduler, T_steps, n_start, x0_src, src_prompt, src_guidance_scale,
    )

    pipe._guidance_scale = tar_guidance_scale
    (
        tar_prompt_embeds,
        pooled_tar_prompt_embeds,
        tar_text_ids,
    ) = pipe.encode_prompt(
        prompt=tar_prompt,
        prompt_2=None,
        device=pipe.device,
    )

    # handle guidance
    if pipe.transformer.config.guidance_embeds:
        tar_guidance = torch.tensor([tar_guidance_scale], device=pipe.device)
        tar_guidance = tar_guidance.expand(x0_src.shape[0])
    else:
        tar_guidance = None

    history = []
    j_star = x0_src.clone().to(torch.float32)  # y
    for flowopt_iter in range(flowopt_iterations + 1):
        f_xt = flux_denoise(
            pipe, scheduler, timesteps, n_start, x_t,
            tar_prompt_embeds, pooled_tar_prompt_embeds, tar_guidance,
            tar_text_ids, latent_src_image_ids,
        )  # Eq. (3)

        if flowopt_iter < flowopt_iterations:
            x_t = x_t.to(torch.float32)
            x_t = x_t - eta * (f_xt - j_star)  # Eq. (6) with c = c_tar
            x_t = x_t.to(x0_src.dtype)

        x0_flowopt = f_xt.clone()
        unpacked_x0_flowopt = pipe._unpack_latents(x0_flowopt, orig_height, orig_width, pipe.vae_scale_factor)
        x0_flowopt_denorm = (unpacked_x0_flowopt / pipe.vae.config.scaling_factor) + pipe.vae.config.shift_factor
        with torch.autocast("cuda"), torch.inference_mode():
            x0_flowopt_image = pipe.vae.decode(x0_flowopt_denorm, return_dict=False)[0].clamp(-1, 1)
        x0_flowopt_image_pil = pipe.image_processor.postprocess(x0_flowopt_image)[0]
        history.append((x0_flowopt_image_pil, f"Iteration {flowopt_iter}"))
        yield history