Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
import torch
|
| 2 |
from diffusers import UniPCMultistepScheduler
|
| 3 |
from diffusers import WanPipeline, AutoencoderKLWan
|
|
|
|
| 4 |
from para_attn.first_block_cache.diffusers_adapters import apply_cache_on_pipe
|
| 5 |
from huggingface_hub import hf_hub_download
|
| 6 |
from PIL import Image
|
|
@@ -13,7 +14,20 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
| 13 |
# --- MODEL SETUP ---
|
| 14 |
model_id = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
|
| 15 |
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
flow_shift = 2.0
|
| 18 |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=flow_shift)
|
| 19 |
pipe.to(device)
|
|
@@ -146,7 +160,8 @@ def generate(prompt, negative_prompt, width, height, num_inference_steps, option
|
|
| 146 |
num_frames=1,
|
| 147 |
num_inference_steps=num_inference_steps,
|
| 148 |
guidance_scale=float(guidance_scale),
|
| 149 |
-
|
|
|
|
| 150 |
)
|
| 151 |
image = output.frames[0][0]
|
| 152 |
image = (image * 255).astype(np.uint8)
|
|
|
|
| 1 |
import torch
|
| 2 |
from diffusers import UniPCMultistepScheduler
|
| 3 |
from diffusers import WanPipeline, AutoencoderKLWan
|
| 4 |
+
from diffusers.models.transformers.transformer_wan import WanTransformer3DModel
|
| 5 |
from para_attn.first_block_cache.diffusers_adapters import apply_cache_on_pipe
|
| 6 |
from huggingface_hub import hf_hub_download
|
| 7 |
from PIL import Image
|
|
|
|
| 14 |
# --- MODEL SETUP ---
|
| 15 |
model_id = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
|
| 16 |
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
|
| 17 |
+
transformer=WanTransformer3DModel.from_pretrained(model_id,
|
| 18 |
+
subfolder='transformer',
|
| 19 |
+
torch_dtype=torch.bfloat16,
|
| 20 |
+
device_map='cuda',
|
| 21 |
+
)
|
| 22 |
+
transformer_2=WanTransformer3DModel.from_pretrained(model_id,
|
| 23 |
+
subfolder='transformer_2',
|
| 24 |
+
torch_dtype=torch.bfloat16,
|
| 25 |
+
device_map='cuda',
|
| 26 |
+
)
|
| 27 |
+
pipe = WanPipeline.from_pretrained(model_id,
|
| 28 |
+
transformer=transformer,
|
| 29 |
+
transformer_2 = transformer_2,
|
| 30 |
+
vae=vae, torch_dtype=torch.bfloat16)
|
| 31 |
flow_shift = 2.0
|
| 32 |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=flow_shift)
|
| 33 |
pipe.to(device)
|
|
|
|
| 160 |
num_frames=1,
|
| 161 |
num_inference_steps=num_inference_steps,
|
| 162 |
guidance_scale=float(guidance_scale),
|
| 163 |
+
guidance_scale_2=float(guidance_scale_2),
|
| 164 |
+
boundary_ratio=0.3,
|
| 165 |
)
|
| 166 |
image = output.frames[0][0]
|
| 167 |
image = (image * 255).astype(np.uint8)
|