Spaces:
Sleeping
Sleeping
Commit
·
aedc519
1
Parent(s):
11e2014
latest changes
Browse files
app.py
CHANGED
|
@@ -1,7 +1,5 @@
|
|
| 1 |
import torch
|
| 2 |
-
|
| 3 |
-
model = torch.hub.load('facebookresearch/pytorchvideo', 'slowfast_r50', pretrained=True)
|
| 4 |
-
from typing import Dict
|
| 5 |
import json
|
| 6 |
import urllib
|
| 7 |
from torchvision.transforms import Compose, Lambda
|
|
@@ -15,24 +13,33 @@ from pytorchvideo.transforms import (
|
|
| 15 |
ShortSideScale,
|
| 16 |
UniformTemporalSubsample,
|
| 17 |
UniformCropVideo
|
| 18 |
-
)
|
|
|
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
| 22 |
device = "cpu"
|
| 23 |
model = model.eval()
|
| 24 |
model = model.to(device)
|
|
|
|
|
|
|
| 25 |
json_url = "https://dl.fbaipublicfiles.com/pyslowfast/dataset/class_names/kinetics_classnames.json"
|
| 26 |
json_filename = "kinetics_classnames.json"
|
| 27 |
-
try:
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
| 29 |
with open(json_filename, "r") as f:
|
| 30 |
kinetics_classnames = json.load(f)
|
| 31 |
|
| 32 |
-
# Create an id to label name mapping
|
| 33 |
kinetics_id_to_classname = {}
|
| 34 |
for k, v in kinetics_classnames.items():
|
| 35 |
kinetics_id_to_classname[v] = str(k).replace('"', "")
|
|
|
|
|
|
|
| 36 |
side_size = 256
|
| 37 |
mean = [0.45, 0.45, 0.45]
|
| 38 |
std = [0.225, 0.225, 0.225]
|
|
@@ -41,19 +48,18 @@ num_frames = 32
|
|
| 41 |
sampling_rate = 2
|
| 42 |
frames_per_second = 30
|
| 43 |
slowfast_alpha = 4
|
| 44 |
-
num_clips = 10
|
| 45 |
-
num_crops = 3
|
| 46 |
|
| 47 |
class PackPathway(torch.nn.Module):
|
| 48 |
"""
|
| 49 |
-
Transform for converting video frames as a list of tensors.
|
| 50 |
"""
|
| 51 |
def __init__(self):
|
| 52 |
super().__init__()
|
| 53 |
-
|
| 54 |
def forward(self, frames: torch.Tensor):
|
| 55 |
fast_pathway = frames
|
| 56 |
-
# Perform temporal sampling from the fast pathway.
|
| 57 |
slow_pathway = torch.index_select(
|
| 58 |
frames,
|
| 59 |
1,
|
|
@@ -64,7 +70,7 @@ class PackPathway(torch.nn.Module):
|
|
| 64 |
frame_list = [slow_pathway, fast_pathway]
|
| 65 |
return frame_list
|
| 66 |
|
| 67 |
-
transform =
|
| 68 |
key="video",
|
| 69 |
transform=Compose(
|
| 70 |
[
|
|
@@ -79,53 +85,81 @@ transform = ApplyTransformToKey(
|
|
| 79 |
]
|
| 80 |
),
|
| 81 |
)
|
| 82 |
-
|
| 83 |
-
# The duration of the input clip is also specific to the model.
|
| 84 |
clip_duration = (num_frames * sampling_rate)/frames_per_second
|
|
|
|
|
|
|
| 85 |
url_link = "https://dl.fbaipublicfiles.com/pytorchvideo/projects/archery.mp4"
|
| 86 |
video_path = 'archery.mp4'
|
| 87 |
try: urllib.URLopener().retrieve(url_link, video_path)
|
| 88 |
except: urllib.request.urlretrieve(url_link, video_path)
|
| 89 |
-
|
| 90 |
-
# The start_sec should correspond to where the action occurs in the video
|
| 91 |
|
| 92 |
def inference(in_vid):
|
| 93 |
-
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
-
|
| 97 |
-
|
| 98 |
|
| 99 |
-
|
| 100 |
-
|
|
|
|
| 101 |
|
| 102 |
-
|
| 103 |
-
|
|
|
|
| 104 |
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
preds = model(inputs)
|
| 110 |
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
pred_classes = preds.topk(k=5).indices[0]
|
| 115 |
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
|
| 120 |
-
|
| 121 |
-
|
|
|
|
|
|
|
| 122 |
|
| 123 |
-
title = "
|
| 124 |
-
description = "
|
| 125 |
-
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
examples = [
|
| 128 |
-
[
|
| 129 |
]
|
| 130 |
|
| 131 |
-
gr.Interface(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
+
import gradio as gr
|
|
|
|
|
|
|
| 3 |
import json
|
| 4 |
import urllib
|
| 5 |
from torchvision.transforms import Compose, Lambda
|
|
|
|
| 13 |
ShortSideScale,
|
| 14 |
UniformTemporalSubsample,
|
| 15 |
UniformCropVideo
|
| 16 |
+
)
|
| 17 |
+
import numpy as np # Explicitly add numpy import
|
| 18 |
|
| 19 |
+
# Choose the `slowfast_r50` model
|
| 20 |
+
model = torch.hub.load('facebookresearch/pytorchvideo', 'slowfast_r50', pretrained=True)
|
| 21 |
+
|
| 22 |
+
# Set to CPU since you don't have a GPU
|
| 23 |
device = "cpu"
|
| 24 |
model = model.eval()
|
| 25 |
model = model.to(device)
|
| 26 |
+
|
| 27 |
+
# --- Class Name Loading (from notebook) ---
|
| 28 |
json_url = "https://dl.fbaipublicfiles.com/pyslowfast/dataset/class_names/kinetics_classnames.json"
|
| 29 |
json_filename = "kinetics_classnames.json"
|
| 30 |
+
try:
|
| 31 |
+
urllib.URLopener().retrieve(json_url, json_filename)
|
| 32 |
+
except:
|
| 33 |
+
urllib.request.urlretrieve(json_url, json_filename)
|
| 34 |
+
|
| 35 |
with open(json_filename, "r") as f:
|
| 36 |
kinetics_classnames = json.load(f)
|
| 37 |
|
|
|
|
| 38 |
kinetics_id_to_classname = {}
|
| 39 |
for k, v in kinetics_classnames.items():
|
| 40 |
kinetics_id_to_classname[v] = str(k).replace('"', "")
|
| 41 |
+
|
| 42 |
+
# --- Define Input Transform (from notebook) ---
|
| 43 |
side_size = 256
|
| 44 |
mean = [0.45, 0.45, 0.45]
|
| 45 |
std = [0.225, 0.225, 0.225]
|
|
|
|
| 48 |
sampling_rate = 2
|
| 49 |
frames_per_second = 30
|
| 50 |
slowfast_alpha = 4
|
| 51 |
+
# num_clips = 10 # Not used in inference function
|
| 52 |
+
# num_crops = 3 # Not used in inference function
|
| 53 |
|
| 54 |
class PackPathway(torch.nn.Module):
|
| 55 |
"""
|
| 56 |
+
Transform for converting video frames as a list of tensors.
|
| 57 |
"""
|
| 58 |
def __init__(self):
|
| 59 |
super().__init__()
|
| 60 |
+
|
| 61 |
def forward(self, frames: torch.Tensor):
|
| 62 |
fast_pathway = frames
|
|
|
|
| 63 |
slow_pathway = torch.index_select(
|
| 64 |
frames,
|
| 65 |
1,
|
|
|
|
| 70 |
frame_list = [slow_pathway, fast_pathway]
|
| 71 |
return frame_list
|
| 72 |
|
| 73 |
+
transform = ApplyTransformToKey(
|
| 74 |
key="video",
|
| 75 |
transform=Compose(
|
| 76 |
[
|
|
|
|
| 85 |
]
|
| 86 |
),
|
| 87 |
)
|
|
|
|
|
|
|
| 88 |
clip_duration = (num_frames * sampling_rate)/frames_per_second
|
| 89 |
+
|
| 90 |
+
# Download example video (for local testing and for Gradio examples)
|
| 91 |
url_link = "https://dl.fbaipublicfiles.com/pytorchvideo/projects/archery.mp4"
|
| 92 |
video_path = 'archery.mp4'
|
| 93 |
try: urllib.URLopener().retrieve(url_link, video_path)
|
| 94 |
except: urllib.request.urlretrieve(url_link, video_path)
|
| 95 |
+
|
|
|
|
| 96 |
|
| 97 |
def inference(in_vid):
|
| 98 |
+
if in_vid is None:
|
| 99 |
+
return "Please upload a video or use the webcam."
|
| 100 |
+
|
| 101 |
+
try:
|
| 102 |
+
# Initialize an EncodedVideo helper class and load the video
|
| 103 |
+
video = EncodedVideo.from_path(in_vid)
|
| 104 |
+
|
| 105 |
+
# Ensure we have enough frames for the clip duration
|
| 106 |
+
if video.duration < clip_duration:
|
| 107 |
+
return f"Video is too short. Minimum duration is {clip_duration:.2f} seconds."
|
| 108 |
+
|
| 109 |
+
# Select the duration of the clip to load by specifying the start and end duration
|
| 110 |
+
start_sec = 0
|
| 111 |
+
end_sec = start_sec + clip_duration
|
| 112 |
+
|
| 113 |
+
# Load the desired clip
|
| 114 |
+
video_data = video.get_clip(start_sec=start_sec, end_sec=end_sec)
|
| 115 |
|
| 116 |
+
# Apply a transform to normalize the video input
|
| 117 |
+
video_data = transform(video_data)
|
| 118 |
|
| 119 |
+
# Move the inputs to the desired device
|
| 120 |
+
inputs = video_data["video"]
|
| 121 |
+
inputs = [i.to(device)[None, ...] for i in inputs]
|
| 122 |
|
| 123 |
+
# Pass the input clip through the model
|
| 124 |
+
with torch.no_grad(): # Ensure no gradient computation for inference
|
| 125 |
+
preds = model(inputs)
|
| 126 |
|
| 127 |
+
# Get the predicted classes
|
| 128 |
+
post_act = torch.nn.Softmax(dim=1)
|
| 129 |
+
preds = post_act(preds)
|
| 130 |
+
pred_classes = preds.topk(k=5).indices[0]
|
|
|
|
| 131 |
|
| 132 |
+
# Map the predicted classes to the label names
|
| 133 |
+
pred_class_names = [kinetics_id_to_classname[int(i)] for i in pred_classes]
|
| 134 |
+
return "Top 5 predicted labels: %s" % ", ".join(pred_class_names)
|
|
|
|
| 135 |
|
| 136 |
+
except Exception as e:
|
| 137 |
+
# Catch common errors like video decoding issues or insufficient frames
|
| 138 |
+
return f"An error occurred during inference: {e}"
|
| 139 |
|
| 140 |
+
# --- UPDATED GRADIO INTERFACE SYNTAX ---
|
| 141 |
+
# Removed gr.inputs and gr.outputs
|
| 142 |
+
inputs_gradio = gr.Video(label="Upload Video or Use Webcam", sources=["upload", "webcam"], format="mp4")
|
| 143 |
+
outputs_gradio = gr.Textbox(label="Top 5 Predicted Labels")
|
| 144 |
|
| 145 |
+
title = "PyTorchVideo SlowFast Action Recognition"
|
| 146 |
+
description = """
|
| 147 |
+
Demo for PyTorchVideo's SlowFast model, pretrained on the Kinetics 400 dataset for action recognition.
|
| 148 |
+
Upload your video or use your webcam to classify the action.
|
| 149 |
+
"""
|
| 150 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1812.03982' target='_blank'>SlowFast Networks for Video Recognition</a> | <a href='https://github.com/facebookresearch/pytorchvideo' target='_blank'>PyTorchVideo GitHub Repo</a></p>"
|
| 151 |
|
| 152 |
examples = [
|
| 153 |
+
[video_path] # Use the downloaded archery.mp4 as an example
|
| 154 |
]
|
| 155 |
|
| 156 |
+
gr.Interface(
|
| 157 |
+
fn=inference,
|
| 158 |
+
inputs=inputs_gradio,
|
| 159 |
+
outputs=outputs_gradio,
|
| 160 |
+
title=title,
|
| 161 |
+
description=description,
|
| 162 |
+
article=article,
|
| 163 |
+
examples=examples,
|
| 164 |
+
analytics_enabled=False
|
| 165 |
+
).launch()
|