Updating to handle prompt queries better.
Browse files- package.json +1 -1
- src/app/worker-connection.js +2 -2
- src/worker/boot-worker.js +57 -146
- src/worker/load-model-core.js +30 -0
- src/worker/model-cache.js +82 -0
package.json
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
{
|
| 2 |
"name": "localm",
|
| 3 |
-
"version": "1.0.
|
| 4 |
"description": "",
|
| 5 |
"main": "chat-full.js",
|
| 6 |
"scripts": {
|
|
|
|
| 1 |
{
|
| 2 |
"name": "localm",
|
| 3 |
+
"version": "1.0.9",
|
| 4 |
"description": "",
|
| 5 |
"main": "chat-full.js",
|
| 6 |
"scripts": {
|
src/app/worker-connection.js
CHANGED
|
@@ -75,7 +75,7 @@ export function workerConnection() {
|
|
| 75 |
async function loadModel(modelName) {
|
| 76 |
await workerLoaded;
|
| 77 |
const { send } = await workerLoaded;
|
| 78 |
-
return send({ type: 'loadModel',
|
| 79 |
}
|
| 80 |
|
| 81 |
/**
|
|
@@ -85,6 +85,6 @@ export function workerConnection() {
|
|
| 85 |
async function runPrompt(promptText, modelName) {
|
| 86 |
await workerLoaded;
|
| 87 |
const { send } = await workerLoaded;
|
| 88 |
-
return send({ type: 'runPrompt', prompt: promptText,
|
| 89 |
}
|
| 90 |
}
|
|
|
|
| 75 |
async function loadModel(modelName) {
|
| 76 |
await workerLoaded;
|
| 77 |
const { send } = await workerLoaded;
|
| 78 |
+
return send({ type: 'loadModel', modelName });
|
| 79 |
}
|
| 80 |
|
| 81 |
/**
|
|
|
|
| 85 |
async function runPrompt(promptText, modelName) {
|
| 86 |
await workerLoaded;
|
| 87 |
const { send } = await workerLoaded;
|
| 88 |
+
return send({ type: 'runPrompt', prompt: promptText, modelName });
|
| 89 |
}
|
| 90 |
}
|
src/worker/boot-worker.js
CHANGED
|
@@ -1,8 +1,9 @@
|
|
| 1 |
// @ts-check
|
| 2 |
|
| 3 |
-
import {
|
| 4 |
|
| 5 |
export function bootWorker() {
|
|
|
|
| 6 |
// Report starting
|
| 7 |
try {
|
| 8 |
self.postMessage({ type: 'status', status: 'initializing' });
|
|
@@ -10,160 +11,70 @@ export function bootWorker() {
|
|
| 10 |
// ignore if postMessage not available for some reason
|
| 11 |
}
|
| 12 |
|
| 13 |
-
(
|
| 14 |
-
// named import `pipeline` is available from the bundled runtime
|
| 15 |
|
| 16 |
-
// Detect available acceleration backends
|
| 17 |
-
let backend = 'wasm';
|
| 18 |
-
try {
|
| 19 |
-
const hasWebGPU = typeof navigator !== 'undefined' && !!navigator.gpu;
|
| 20 |
-
let hasWebGL2 = false;
|
| 21 |
-
try {
|
| 22 |
-
// In a worker environment prefer OffscreenCanvas to test webgl2
|
| 23 |
-
if (typeof OffscreenCanvas !== 'undefined') {
|
| 24 |
-
const c = new OffscreenCanvas(1, 1);
|
| 25 |
-
const gl = c.getContext('webgl2') || c.getContext('webgl');
|
| 26 |
-
hasWebGL2 = !!gl;
|
| 27 |
-
} else if (typeof document !== 'undefined') {
|
| 28 |
-
const canvas = document.createElement('canvas');
|
| 29 |
-
const gl = canvas.getContext('webgl2') || canvas.getContext('webgl');
|
| 30 |
-
hasWebGL2 = !!gl;
|
| 31 |
-
}
|
| 32 |
-
} catch (e) {
|
| 33 |
-
hasWebGL2 = false;
|
| 34 |
-
}
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
} catch (e) {
|
| 39 |
-
backend = 'wasm';
|
| 40 |
-
}
|
| 41 |
|
| 42 |
-
|
|
|
|
| 43 |
|
| 44 |
-
|
|
|
|
| 45 |
try {
|
| 46 |
-
if (
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
} catch (err) {
|
| 49 |
-
self.postMessage({
|
| 50 |
}
|
|
|
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
'
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
// helper: create or return existing pipeline promise
|
| 66 |
-
async function ensureModel(modelName, id) {
|
| 67 |
-
if (modelCache.has(modelName)) {
|
| 68 |
-
const entry = modelCache.get(modelName);
|
| 69 |
-
// If pipeline already resolved, return it, otherwise await the promise
|
| 70 |
-
if (entry.pipeline) return entry.pipeline;
|
| 71 |
-
return entry.promise;
|
| 72 |
-
}
|
| 73 |
-
|
| 74 |
-
// create loader promise
|
| 75 |
-
const loader = (async () => {
|
| 76 |
-
if (!pipeline) {
|
| 77 |
-
throw new Error('transformers runtime not available');
|
| 78 |
-
}
|
| 79 |
-
|
| 80 |
-
// Post progress and status
|
| 81 |
-
if (id) self.postMessage({ id, type: 'status', status: 'model-loading', model: modelName });
|
| 82 |
-
|
| 83 |
-
// Choose device hint as a literal union. Cast only at the call site if TypeScript
|
| 84 |
-
// needs help narrowing.
|
| 85 |
-
const deviceOption = backend === 'webgpu' ? 'webgpu' : (backend === 'webgl' ? 'gpu' : 'wasm');
|
| 86 |
-
|
| 87 |
-
// Create a text-generation pipeline. Depending on the model this may
|
| 88 |
-
// perform downloads of model weights; the library should report progress
|
| 89 |
-
// via its own callbacks if available.
|
| 90 |
-
const pipe = await pipeline('text-generation', modelName, /** @type {any} */ ({
|
| 91 |
-
device: deviceOption,
|
| 92 |
-
progress_callback: (progress) => {
|
| 93 |
-
if (id) self.postMessage({ id, type: 'model-progress', progress, model: modelName });
|
| 94 |
-
}
|
| 95 |
-
}));
|
| 96 |
-
|
| 97 |
-
// store pipeline for reuse
|
| 98 |
-
const entry = modelCache.get(modelName) || {};
|
| 99 |
-
entry.pipeline = pipe;
|
| 100 |
-
modelCache.set(modelName, entry);
|
| 101 |
-
|
| 102 |
-
if (id) self.postMessage({ id, type: 'status', status: 'model-loaded', model: modelName });
|
| 103 |
-
return pipe;
|
| 104 |
-
})();
|
| 105 |
-
|
| 106 |
-
// temporarly store the in-progress promise so concurrent requests reuse it
|
| 107 |
-
modelCache.set(modelName, { promise: loader });
|
| 108 |
-
return loader;
|
| 109 |
}
|
|
|
|
|
|
|
| 110 |
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
}
|
| 124 |
-
// Fallback: try JSON stringify
|
| 125 |
-
return String(output);
|
| 126 |
-
} catch (e) {
|
| 127 |
-
return '';
|
| 128 |
-
}
|
| 129 |
}
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
try {
|
| 136 |
-
if (msg.type === 'listModels') {
|
| 137 |
-
self.postMessage({ id, type: 'response', result: availableModels });
|
| 138 |
-
} else if (msg.type === 'loadModel') {
|
| 139 |
-
const modelName = msg.model;
|
| 140 |
-
try {
|
| 141 |
-
await ensureModel(modelName, id);
|
| 142 |
-
self.postMessage({ id, type: 'response', result: { model: modelName, status: 'loaded' } });
|
| 143 |
-
} catch (err) {
|
| 144 |
-
self.postMessage({ id, type: 'error', error: String(err) });
|
| 145 |
-
}
|
| 146 |
-
} else if (msg.type === 'runPrompt') {
|
| 147 |
-
const prompt = msg.prompt || '';
|
| 148 |
-
const modelName = msg.model;
|
| 149 |
-
try {
|
| 150 |
-
const pipe = await ensureModel(modelName, id);
|
| 151 |
-
// run the pipeline
|
| 152 |
-
if (!pipe) throw new Error('pipeline not available');
|
| 153 |
-
self.postMessage({ id, type: 'status', status: 'inference-start', model: modelName });
|
| 154 |
-
const out = await pipe(prompt, msg.options || {});
|
| 155 |
-
const text = extractText(out);
|
| 156 |
-
self.postMessage({ id, type: 'status', status: 'inference-done', model: modelName });
|
| 157 |
-
self.postMessage({ id, type: 'response', result: text });
|
| 158 |
-
} catch (err) {
|
| 159 |
-
self.postMessage({ id, type: 'error', error: String(err) });
|
| 160 |
-
}
|
| 161 |
-
} else {
|
| 162 |
-
if (id) self.postMessage({ id, type: 'error', error: 'unknown-message-type' });
|
| 163 |
-
}
|
| 164 |
-
} catch (err) {
|
| 165 |
-
if (id) self.postMessage({ id, type: 'error', error: String(err) });
|
| 166 |
-
}
|
| 167 |
-
});
|
| 168 |
-
})();
|
| 169 |
}
|
|
|
|
| 1 |
// @ts-check
|
| 2 |
|
| 3 |
+
import { ModelCache } from './model-cache';
|
| 4 |
|
| 5 |
export function bootWorker() {
|
| 6 |
+
const modelCache = new ModelCache();
|
| 7 |
// Report starting
|
| 8 |
try {
|
| 9 |
self.postMessage({ type: 'status', status: 'initializing' });
|
|
|
|
| 11 |
// ignore if postMessage not available for some reason
|
| 12 |
}
|
| 13 |
|
| 14 |
+
self.postMessage({ type: 'status', status: 'backend-detected', backend: modelCache.backend });
|
|
|
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
// signal ready to main thread (worker script loaded; model runtime may still be pending)
|
| 18 |
+
self.postMessage({ type: 'ready' });
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
// handle incoming requests from the UI thread
|
| 21 |
+
self.addEventListener('message', handleMessage);
|
| 22 |
|
| 23 |
+
async function handleMessage({ data }) {
|
| 24 |
+
const { id } = data;
|
| 25 |
try {
|
| 26 |
+
if (data.type === 'listModels') {
|
| 27 |
+
self.postMessage({ id, type: 'response', result: modelCache.knownModels });
|
| 28 |
+
} else if (data.type === 'loadModel') {
|
| 29 |
+
const { modelName = modelCache.knownModels[0] } = data;
|
| 30 |
+
try {
|
| 31 |
+
const pipe = await modelCache.getModel({ modelName });
|
| 32 |
+
self.postMessage({ id, type: 'response', result: { model: modelName, status: 'loaded' } });
|
| 33 |
+
} catch (err) {
|
| 34 |
+
self.postMessage({ id, type: 'error', error: String(err) });
|
| 35 |
+
}
|
| 36 |
+
} else if (data.type === 'runPrompt') {
|
| 37 |
+
handleRunPrompt(data);
|
| 38 |
+
} else {
|
| 39 |
+
if (id) self.postMessage({ id, type: 'error', error: 'unknown-message-type' });
|
| 40 |
+
}
|
| 41 |
} catch (err) {
|
| 42 |
+
if (id) self.postMessage({ id, type: 'error', error: String(err) });
|
| 43 |
}
|
| 44 |
+
}
|
| 45 |
|
| 46 |
+
async function handleRunPrompt({ prompt, modelName = modelCache.knownModels[0], id, options }) {
|
| 47 |
+
try {
|
| 48 |
+
const pipe = await modelCache.getModel({ modelName });
|
| 49 |
+
// run the pipeline
|
| 50 |
+
if (!pipe) throw new Error('pipeline not available');
|
| 51 |
+
self.postMessage({ id, type: 'status', status: 'inference-start', model: modelName });
|
| 52 |
+
const out = await pipe(prompt, options || {});
|
| 53 |
+
const text = extractText(out);
|
| 54 |
+
self.postMessage({ id, type: 'status', status: 'inference-done', model: modelName });
|
| 55 |
+
self.postMessage({ id, type: 'response', result: text });
|
| 56 |
+
} catch (err) {
|
| 57 |
+
self.postMessage({ id, type: 'error', error: String(err) });
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
}
|
| 59 |
+
}
|
| 60 |
+
}
|
| 61 |
|
| 62 |
+
// helper to extract generated text from various runtime outputs
|
| 63 |
+
function extractText(output) {
|
| 64 |
+
// typical shapes: [{ generated_text: '...' }] or [{ text: '...' }] or string
|
| 65 |
+
try {
|
| 66 |
+
if (!output) return '';
|
| 67 |
+
if (typeof output === 'string') return output;
|
| 68 |
+
if (Array.isArray(output) && output.length > 0) {
|
| 69 |
+
const el = output[0];
|
| 70 |
+
if (el.generated_text) return el.generated_text;
|
| 71 |
+
if (el.text) return el.text;
|
| 72 |
+
// Some runtimes return an array of strings
|
| 73 |
+
if (typeof el === 'string') return el;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
}
|
| 75 |
+
// Fallback: try JSON stringify
|
| 76 |
+
return String(output);
|
| 77 |
+
} catch (e) {
|
| 78 |
+
return '';
|
| 79 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
}
|
src/worker/load-model-core.js
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// @ts-check
|
| 2 |
+
|
| 3 |
+
import { pipeline } from '@huggingface/transformers';
|
| 4 |
+
|
| 5 |
+
/**
|
| 6 |
+
* @param {{
|
| 7 |
+
* modelName: string,
|
| 8 |
+
* device: import('@huggingface/transformers').DeviceType,
|
| 9 |
+
* onProgress?: import('@huggingface/transformers').ProgressCallback
|
| 10 |
+
* }} _
|
| 11 |
+
*/
|
| 12 |
+
export async function loadModelCore({
|
| 13 |
+
modelName,
|
| 14 |
+
device,
|
| 15 |
+
onProgress
|
| 16 |
+
}) {
|
| 17 |
+
// Create a text-generation pipeline. Depending on the model this may
|
| 18 |
+
// perform downloads of model weights; the library should report progress
|
| 19 |
+
// via its own callbacks if available.
|
| 20 |
+
const pipe = await pipeline(
|
| 21 |
+
'text-generation',
|
| 22 |
+
modelName,{
|
| 23 |
+
device,
|
| 24 |
+
progress_callback: (progress) => {
|
| 25 |
+
if (onProgress) onProgress(progress);
|
| 26 |
+
}
|
| 27 |
+
});
|
| 28 |
+
|
| 29 |
+
return pipe;
|
| 30 |
+
}
|
src/worker/model-cache.js
ADDED
|
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// @ts-check
|
| 2 |
+
|
| 3 |
+
import { pipeline } from '@huggingface/transformers';
|
| 4 |
+
import { loadModelCore } from './load-model-core';
|
| 5 |
+
|
| 6 |
+
export class ModelCache {
|
| 7 |
+
cache = new Map();
|
| 8 |
+
/** @type {import('@huggingface/transformers').DeviceType | undefined} */
|
| 9 |
+
backend = undefined;
|
| 10 |
+
|
| 11 |
+
knownModels = [
|
| 12 |
+
'Xenova/phi-3-mini-4k-instruct',
|
| 13 |
+
'Xenova/phi-1.5',
|
| 14 |
+
'Xenova/all-MiniLM-L6-v2'
|
| 15 |
+
];
|
| 16 |
+
|
| 17 |
+
/**
|
| 18 |
+
* @param {{
|
| 19 |
+
* modelName: string
|
| 20 |
+
* }} _
|
| 21 |
+
*/
|
| 22 |
+
getModel({ modelName }) {
|
| 23 |
+
return this.cache.get(modelName) || this._loadModelAndStore({ modelName });
|
| 24 |
+
}
|
| 25 |
+
|
| 26 |
+
/**
|
| 27 |
+
* @param {{
|
| 28 |
+
* modelName: string
|
| 29 |
+
* }} _
|
| 30 |
+
*/
|
| 31 |
+
_loadModelAndStore({ modelName }) {
|
| 32 |
+
if (!this.backend) this.backend = detectTransformersBackend();
|
| 33 |
+
const modelPromise = loadModelCore({
|
| 34 |
+
modelName,
|
| 35 |
+
device: this.backend
|
| 36 |
+
});
|
| 37 |
+
this.cache.set(modelName, modelPromise);
|
| 38 |
+
modelPromise.then(
|
| 39 |
+
model => {
|
| 40 |
+
this.cache.set(modelName, model);
|
| 41 |
+
},
|
| 42 |
+
() => {
|
| 43 |
+
this.cache.delete(modelName);
|
| 44 |
+
});
|
| 45 |
+
|
| 46 |
+
return modelPromise;
|
| 47 |
+
}
|
| 48 |
+
|
| 49 |
+
}
|
| 50 |
+
|
| 51 |
+
export function detectTransformersBackend() {
|
| 52 |
+
/**
|
| 53 |
+
* Detect available acceleration backends
|
| 54 |
+
* @type {import('@huggingface/transformers').DeviceType}
|
| 55 |
+
*/
|
| 56 |
+
let backend = 'wasm';
|
| 57 |
+
try {
|
| 58 |
+
const hasWebGPU = typeof navigator !== 'undefined' && !!/** @type {*} */(navigator).gpu;
|
| 59 |
+
let hasWebGL2 = false;
|
| 60 |
+
try {
|
| 61 |
+
// In a worker environment prefer OffscreenCanvas to test webgl2
|
| 62 |
+
if (typeof OffscreenCanvas !== 'undefined') {
|
| 63 |
+
const c = new OffscreenCanvas(1, 1);
|
| 64 |
+
const gl = c.getContext('webgl2') || c.getContext('webgl');
|
| 65 |
+
hasWebGL2 = !!gl;
|
| 66 |
+
} else if (typeof document !== 'undefined') {
|
| 67 |
+
const canvas = document.createElement('canvas');
|
| 68 |
+
const gl = canvas.getContext('webgl2') || canvas.getContext('webgl');
|
| 69 |
+
hasWebGL2 = !!gl;
|
| 70 |
+
}
|
| 71 |
+
} catch (e) {
|
| 72 |
+
hasWebGL2 = false;
|
| 73 |
+
}
|
| 74 |
+
|
| 75 |
+
if (hasWebGPU) backend = 'webgpu';
|
| 76 |
+
else if (hasWebGL2) backend = 'gpu';
|
| 77 |
+
} catch (e) {
|
| 78 |
+
backend = 'wasm';
|
| 79 |
+
}
|
| 80 |
+
|
| 81 |
+
return backend;
|
| 82 |
+
}
|