added blur filtering
Browse files- app.py +16 -21
- utils/blur_filter.py +53 -0
app.py
CHANGED
|
@@ -26,6 +26,8 @@ import numpy as np
|
|
| 26 |
from PIL import Image
|
| 27 |
import boto3
|
| 28 |
|
|
|
|
|
|
|
| 29 |
import os
|
| 30 |
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
|
| 31 |
os.environ['OMP_NUM_THREADS'] = '4'
|
|
@@ -217,29 +219,20 @@ def process_video(vid_path, dsdg_thresh):
|
|
| 217 |
cap = cv.VideoCapture(vid_path)
|
| 218 |
input_width = int(cap.get(cv.CAP_PROP_FRAME_WIDTH))
|
| 219 |
input_height = int(cap.get(cv.CAP_PROP_FRAME_HEIGHT))
|
| 220 |
-
fourcc = cv.VideoWriter_fourcc(*'mp4v')
|
| 221 |
-
output_vid_path = 'output_dsdg.mp4'
|
| 222 |
|
| 223 |
-
|
| 224 |
-
|
| 225 |
inference_images = []
|
| 226 |
inference_bboxes = []
|
| 227 |
inference_depths = []
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
if bbox and (depth_img is not None):
|
| 237 |
-
inference_images.append(img)
|
| 238 |
-
inference_bboxes.append(bbox)
|
| 239 |
-
inference_depths.append(depth_img)
|
| 240 |
-
all_frames.append(img)
|
| 241 |
-
frame_counter += 1
|
| 242 |
-
cap.release()
|
| 243 |
if not inference_images:
|
| 244 |
return vid_path, {'Not supported right now': 0}, -1, vid_path, 'Faces too small or not found', -1
|
| 245 |
|
|
@@ -255,9 +248,11 @@ def process_video(vid_path, dsdg_thresh):
|
|
| 255 |
text = f'{cls_dsdg} {w}*{h}'
|
| 256 |
cv.rectangle(img, (x, y), (x2, y2), color_dsdg, 2)
|
| 257 |
cv.putText(img, text, (x, y2 + 30), cv.FONT_HERSHEY_COMPLEX, 1, color_dsdg)
|
| 258 |
-
|
|
|
|
|
|
|
| 259 |
out_dsdg = cv.VideoWriter(output_vid_path, fourcc, 6.0, (input_width, input_height))
|
| 260 |
-
for img in
|
| 261 |
# Write the DSDG frame to the output video
|
| 262 |
out_dsdg.write(img)
|
| 263 |
out_dsdg.release()
|
|
|
|
| 26 |
from PIL import Image
|
| 27 |
import boto3
|
| 28 |
|
| 29 |
+
from utils.blur_filter import filter_frames
|
| 30 |
+
|
| 31 |
import os
|
| 32 |
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
|
| 33 |
os.environ['OMP_NUM_THREADS'] = '4'
|
|
|
|
| 219 |
cap = cv.VideoCapture(vid_path)
|
| 220 |
input_width = int(cap.get(cv.CAP_PROP_FRAME_WIDTH))
|
| 221 |
input_height = int(cap.get(cv.CAP_PROP_FRAME_HEIGHT))
|
|
|
|
|
|
|
| 222 |
|
| 223 |
+
most_focused = filter_frames(cap)
|
| 224 |
+
|
| 225 |
inference_images = []
|
| 226 |
inference_bboxes = []
|
| 227 |
inference_depths = []
|
| 228 |
+
for frame in most_focused:
|
| 229 |
+
# Run inference on the current frame
|
| 230 |
+
img, bbox, depth_img = analyze_face(frame)
|
| 231 |
+
if bbox and (depth_img is not None):
|
| 232 |
+
inference_images.append(img)
|
| 233 |
+
inference_bboxes.append(bbox)
|
| 234 |
+
inference_depths.append(depth_img)
|
| 235 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 236 |
if not inference_images:
|
| 237 |
return vid_path, {'Not supported right now': 0}, -1, vid_path, 'Faces too small or not found', -1
|
| 238 |
|
|
|
|
| 248 |
text = f'{cls_dsdg} {w}*{h}'
|
| 249 |
cv.rectangle(img, (x, y), (x2, y2), color_dsdg, 2)
|
| 250 |
cv.putText(img, text, (x, y2 + 30), cv.FONT_HERSHEY_COMPLEX, 1, color_dsdg)
|
| 251 |
+
|
| 252 |
+
fourcc = cv.VideoWriter_fourcc(*'mp4v')
|
| 253 |
+
output_vid_path = 'output_dsdg.mp4'
|
| 254 |
out_dsdg = cv.VideoWriter(output_vid_path, fourcc, 6.0, (input_width, input_height))
|
| 255 |
+
for img in most_focused:
|
| 256 |
# Write the DSDG frame to the output video
|
| 257 |
out_dsdg.write(img)
|
| 258 |
out_dsdg.release()
|
utils/blur_filter.py
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from collections import deque
|
| 2 |
+
import cv2 as cv
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def estimate_focus_measure(frame):
|
| 7 |
+
gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
|
| 8 |
+
laplacian = cv.Laplacian(gray, cv.CV_64F)
|
| 9 |
+
return laplacian.var()
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def update_threshold(blur_history):
|
| 13 |
+
return np.percentile(blur_history, 50)
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def select_most_focused(frame_history, threshold, select_n=5):
|
| 17 |
+
sorted_frames = sorted(frame_history, key=lambda x: x[1], reverse=True)
|
| 18 |
+
# Select least blurry frames from the last incomplete second
|
| 19 |
+
selected = [frame for frame, fm in sorted_frames[:select_n] if fm > threshold]
|
| 20 |
+
return selected
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def filter_frames(cap):
|
| 24 |
+
fps = int(cap.get(cv.CAP_PROP_FPS))
|
| 25 |
+
frame_history = deque(maxlen=fps)
|
| 26 |
+
blur_history = []
|
| 27 |
+
most_focused_frames = []
|
| 28 |
+
|
| 29 |
+
if cap.isOpened():
|
| 30 |
+
ret, frame = cap.read()
|
| 31 |
+
counter = 1
|
| 32 |
+
second = 0
|
| 33 |
+
|
| 34 |
+
while ret:
|
| 35 |
+
fm = estimate_focus_measure(frame)
|
| 36 |
+
frame_history.append([frame, fm])
|
| 37 |
+
blur_history.append(fm)
|
| 38 |
+
|
| 39 |
+
if counter >= fps:
|
| 40 |
+
second += 1
|
| 41 |
+
threshold = update_threshold(blur_history)
|
| 42 |
+
if counter % fps == 0:
|
| 43 |
+
most_focused_frames += select_most_focused(frame_history, threshold)
|
| 44 |
+
frame_history.clear()
|
| 45 |
+
ret, frame = cap.read()
|
| 46 |
+
counter += 1
|
| 47 |
+
|
| 48 |
+
if frame_history:
|
| 49 |
+
threshold = update_threshold(blur_history)
|
| 50 |
+
most_focused_frames += select_most_focused(frame_history, threshold)
|
| 51 |
+
|
| 52 |
+
cap.release()
|
| 53 |
+
return most_focused_frames
|