Spaces:
Running
Running
重构 preprocess.py,增加两个情感分析模型的支持,优化情感得分计算逻辑,增强错误处理和日志打印
Browse files- preprocess.py +87 -18
preprocess.py
CHANGED
|
@@ -1,6 +1,9 @@
|
|
| 1 |
import re
|
| 2 |
import sys
|
| 3 |
import os
|
|
|
|
|
|
|
|
|
|
| 4 |
import numpy as np
|
| 5 |
from collections import defaultdict
|
| 6 |
import pandas as pd
|
|
@@ -19,7 +22,7 @@ import akshare as ak
|
|
| 19 |
|
| 20 |
from gensim.models import Word2Vec
|
| 21 |
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
| 22 |
-
|
| 23 |
|
| 24 |
|
| 25 |
|
|
@@ -47,13 +50,12 @@ print("Is NPL GPU used Preprocessing.py:", spacy.prefer_gpu())
|
|
| 47 |
|
| 48 |
|
| 49 |
# 使用合适的模型和tokenizer
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
sa_model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 53 |
|
| 54 |
-
# 初始化情感分析器
|
| 55 |
-
sentiment_analyzer = pipeline('sentiment-analysis', model=sa_model, tokenizer=tokenizer)
|
| 56 |
|
|
|
|
|
|
|
| 57 |
|
| 58 |
|
| 59 |
|
|
@@ -177,16 +179,28 @@ def process_entities(entities):
|
|
| 177 |
def process_pos_tags(pos_tags):
|
| 178 |
pos_counts = defaultdict(int)
|
| 179 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
for pos in pos_tags:
|
| 181 |
-
|
|
|
|
|
|
|
|
|
|
| 182 |
|
| 183 |
# 将字典转化为有序的数组
|
| 184 |
pos_types = sorted(pos_counts.keys())
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
counts = np.array([pos_counts[pos] for pos in pos_types])
|
| 186 |
except Exception as e:
|
| 187 |
-
print(f"Error in process_pos_tags: {str(e)}")
|
| 188 |
-
|
| 189 |
-
pos_types = []
|
| 190 |
|
| 191 |
return counts, pos_types
|
| 192 |
|
|
@@ -211,14 +225,69 @@ def get_document_vector(words, model = word2vec_model):
|
|
| 211 |
# 函数:获取情感得分
|
| 212 |
def get_sentiment_score(text):
|
| 213 |
try:
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
except Exception as e:
|
| 218 |
print(f"Error in get_sentiment_score for text: {text[:50]}... Error: {str(e)}")
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
|
| 223 |
|
| 224 |
|
|
@@ -386,7 +455,7 @@ def lemmatized_entry(entry):
|
|
| 386 |
nlp = spacy.load("en_core_web_md")
|
| 387 |
|
| 388 |
# 检查是否使用 GPU
|
| 389 |
-
print("Is NPL GPU used Lemmatized:", spacy.prefer_gpu())
|
| 390 |
|
| 391 |
|
| 392 |
|
|
@@ -521,7 +590,7 @@ def lemmatize_text(text):
|
|
| 521 |
nlp = spacy.load("en_core_web_md")
|
| 522 |
|
| 523 |
# 检查是否使用 GPU
|
| 524 |
-
print("Is NPL GPU used Enchance_text.py:", spacy.prefer_gpu())
|
| 525 |
|
| 526 |
|
| 527 |
|
|
|
|
| 1 |
import re
|
| 2 |
import sys
|
| 3 |
import os
|
| 4 |
+
import trace
|
| 5 |
+
import traceback
|
| 6 |
+
from typing import final
|
| 7 |
import numpy as np
|
| 8 |
from collections import defaultdict
|
| 9 |
import pandas as pd
|
|
|
|
| 22 |
|
| 23 |
from gensim.models import Word2Vec
|
| 24 |
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
| 25 |
+
from transformers import BertTokenizer, BertForSequenceClassification
|
| 26 |
|
| 27 |
|
| 28 |
|
|
|
|
| 50 |
|
| 51 |
|
| 52 |
# 使用合适的模型和tokenizer
|
| 53 |
+
tokenizer_one = AutoTokenizer.from_pretrained("ProsusAI/finbert")
|
| 54 |
+
sa_model_one = AutoModelForSequenceClassification.from_pretrained("ProsusAI/finbert")
|
|
|
|
| 55 |
|
|
|
|
|
|
|
| 56 |
|
| 57 |
+
tokenizer_two = BertTokenizer.from_pretrained('yiyanghkust/finbert-tone')
|
| 58 |
+
sa_model_two = BertForSequenceClassification.from_pretrained('yiyanghkust/finbert-tone',num_labels=3)
|
| 59 |
|
| 60 |
|
| 61 |
|
|
|
|
| 179 |
def process_pos_tags(pos_tags):
|
| 180 |
pos_counts = defaultdict(int)
|
| 181 |
try:
|
| 182 |
+
# 确保 pos_tags 不为空且是有效的标记
|
| 183 |
+
if not pos_tags or not isinstance(pos_tags, (list, tuple)):
|
| 184 |
+
print(f"Invalid POS tags: {pos_tags}")
|
| 185 |
+
return np.zeros(1), []
|
| 186 |
+
|
| 187 |
+
# 安全地处理每个 POS 标记
|
| 188 |
for pos in pos_tags:
|
| 189 |
+
if isinstance(pos, str) and pos: # 确保是非空字符串
|
| 190 |
+
pos_counts[pos] += 1
|
| 191 |
+
elif isinstance(pos, (list, tuple)) and len(pos) > 1: # 如果是元组/列表,取第二个元素
|
| 192 |
+
pos_counts[pos[1]] += 1
|
| 193 |
|
| 194 |
# 将字典转化为有序的数组
|
| 195 |
pos_types = sorted(pos_counts.keys())
|
| 196 |
+
if not pos_types: # 如果没有有效的类型,返回零向量
|
| 197 |
+
print(f"No valid POS tags found: {pos_tags}")
|
| 198 |
+
return np.zeros(1), []
|
| 199 |
+
|
| 200 |
counts = np.array([pos_counts[pos] for pos in pos_types])
|
| 201 |
except Exception as e:
|
| 202 |
+
print(f"Error in process_pos_tags: {str(e)} for POS tags: {pos_tags}")
|
| 203 |
+
return np.zeros(1), []
|
|
|
|
| 204 |
|
| 205 |
return counts, pos_types
|
| 206 |
|
|
|
|
| 225 |
# 函数:获取情感得分
|
| 226 |
def get_sentiment_score(text):
|
| 227 |
try:
|
| 228 |
+
import torch
|
| 229 |
+
|
| 230 |
+
# 获取第一个模型的结果 (ProsusAI/finbert)
|
| 231 |
+
# result_one = sentiment_analyzer_one(text, truncation=True, max_length=512)[0]
|
| 232 |
+
# 获取模型输出
|
| 233 |
+
with torch.no_grad():
|
| 234 |
+
outputs_one = sa_model_one(**tokenizer_one(text, return_tensors="pt", truncation=False))
|
| 235 |
+
predictions_one = torch.nn.functional.softmax(outputs_one.logits, dim=-1)
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
outputs_two = sa_model_two(**tokenizer_two(text, return_tensors="pt", truncation=False))
|
| 239 |
+
predictions_two = torch.nn.functional.softmax(outputs_two.logits, dim=-1)
|
| 240 |
+
|
| 241 |
+
# 获取所有标签的概率
|
| 242 |
+
scores_one = predictions_one[0].tolist()
|
| 243 |
+
scores_two = predictions_two[0].tolist()
|
| 244 |
+
|
| 245 |
+
# 获取标签映射
|
| 246 |
+
# labels_one = sa_model_one.config.id2label
|
| 247 |
+
# labels_two = sa_model_two.config.id2label
|
| 248 |
+
|
| 249 |
+
# 打印所有标签的概率
|
| 250 |
+
score_one_positive = scores_one[0]
|
| 251 |
+
score_one_negative = scores_one[1]
|
| 252 |
+
score_one_neutral = scores_one[2]
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
final_score_one = 0.0
|
| 256 |
+
final_score_one += score_one_positive
|
| 257 |
+
final_score_one -= score_one_negative
|
| 258 |
+
if score_one_positive > score_one_negative:
|
| 259 |
+
final_score_one += score_one_neutral
|
| 260 |
+
else:
|
| 261 |
+
final_score_one -= score_one_neutral
|
| 262 |
+
|
| 263 |
+
final_score_one = max(-1.0, min(1.0, final_score_one))
|
| 264 |
+
|
| 265 |
+
score_two_neutral = scores_two[0]
|
| 266 |
+
score_two_positive = scores_two[1]
|
| 267 |
+
score_two_negative = scores_two[2]
|
| 268 |
+
|
| 269 |
+
final_score_two = 0.0
|
| 270 |
+
final_score_two += score_two_positive
|
| 271 |
+
final_score_two -= score_two_negative
|
| 272 |
+
if score_two_positive > score_two_negative:
|
| 273 |
+
final_score_two += score_two_neutral
|
| 274 |
+
else:
|
| 275 |
+
final_score_two -= score_two_neutral
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
# 将两个模型的得分组合(加权平均)
|
| 279 |
+
final_score = np.average([final_score_one, final_score_two], weights=[0.3, 0.7])
|
| 280 |
+
|
| 281 |
+
# 确保最终得分在 [-1, 1] 范围内
|
| 282 |
+
final_score = np.clip(final_score, -1.0, 1.0)
|
| 283 |
+
|
| 284 |
+
return final_score
|
| 285 |
+
|
| 286 |
except Exception as e:
|
| 287 |
print(f"Error in get_sentiment_score for text: {text[:50]}... Error: {str(e)}")
|
| 288 |
+
traceback.print_exc()
|
| 289 |
+
return 0.0
|
| 290 |
+
|
| 291 |
|
| 292 |
|
| 293 |
|
|
|
|
| 455 |
nlp = spacy.load("en_core_web_md")
|
| 456 |
|
| 457 |
# 检查是否使用 GPU
|
| 458 |
+
# print("Is NPL GPU used Lemmatized:", spacy.prefer_gpu())
|
| 459 |
|
| 460 |
|
| 461 |
|
|
|
|
| 590 |
nlp = spacy.load("en_core_web_md")
|
| 591 |
|
| 592 |
# 检查是否使用 GPU
|
| 593 |
+
# print("Is NPL GPU used Enchance_text.py:", spacy.prefer_gpu())
|
| 594 |
|
| 595 |
|
| 596 |
|