Spaces:
Configuration error
Configuration error
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| import logging | |
| import numpy as np | |
| import cv2 | |
| import torch | |
| Image = np.ndarray | |
| Boxes = torch.Tensor | |
| class MatrixVisualizer: | |
| """ | |
| Base visualizer for matrix data | |
| """ | |
| def __init__( | |
| self, | |
| inplace=True, | |
| cmap=cv2.COLORMAP_PARULA, | |
| val_scale=1.0, | |
| alpha=0.7, | |
| interp_method_matrix=cv2.INTER_LINEAR, | |
| interp_method_mask=cv2.INTER_NEAREST, | |
| ): | |
| self.inplace = inplace | |
| self.cmap = cmap | |
| self.val_scale = val_scale | |
| self.alpha = alpha | |
| self.interp_method_matrix = interp_method_matrix | |
| self.interp_method_mask = interp_method_mask | |
| def visualize(self, image_bgr, mask, matrix, bbox_xywh): | |
| self._check_image(image_bgr) | |
| self._check_mask_matrix(mask, matrix) | |
| if self.inplace: | |
| image_target_bgr = image_bgr | |
| else: | |
| image_target_bgr = image_bgr | |
| image_target_bgr *= 0 | |
| x, y, w, h = [int(v) for v in bbox_xywh] | |
| if w <= 0 or h <= 0: | |
| return image_bgr | |
| mask, matrix = self._resize(mask, matrix, w, h) | |
| mask_bg = np.tile((mask == 0)[:, :, np.newaxis], [1, 1, 3]) | |
| matrix_scaled = matrix.astype(np.float32) * self.val_scale | |
| _EPSILON = 1e-6 | |
| if np.any(matrix_scaled > 255 + _EPSILON): | |
| logger = logging.getLogger(__name__) | |
| logger.warning( | |
| f"Matrix has values > {255 + _EPSILON} after " f"scaling, clipping to [0..255]" | |
| ) | |
| matrix_scaled_8u = matrix_scaled.clip(0, 255).astype(np.uint8) | |
| matrix_vis = cv2.applyColorMap(matrix_scaled_8u, self.cmap) | |
| matrix_vis[mask_bg] = image_target_bgr[y : y + h, x : x + w, :][mask_bg] | |
| image_target_bgr[y : y + h, x : x + w, :] = ( | |
| image_target_bgr[y : y + h, x : x + w, :] * (1.0 - self.alpha) + matrix_vis * self.alpha | |
| ) | |
| return image_target_bgr.astype(np.uint8) | |
| def _resize(self, mask, matrix, w, h): | |
| if (w != mask.shape[1]) or (h != mask.shape[0]): | |
| mask = cv2.resize(mask, (w, h), self.interp_method_mask) | |
| if (w != matrix.shape[1]) or (h != matrix.shape[0]): | |
| matrix = cv2.resize(matrix, (w, h), self.interp_method_matrix) | |
| return mask, matrix | |
| def _check_image(self, image_rgb): | |
| assert len(image_rgb.shape) == 3 | |
| assert image_rgb.shape[2] == 3 | |
| assert image_rgb.dtype == np.uint8 | |
| def _check_mask_matrix(self, mask, matrix): | |
| assert len(matrix.shape) == 2 | |
| assert len(mask.shape) == 2 | |
| assert mask.dtype == np.uint8 | |
| class RectangleVisualizer: | |
| _COLOR_GREEN = (18, 127, 15) | |
| def __init__(self, color=_COLOR_GREEN, thickness=1): | |
| self.color = color | |
| self.thickness = thickness | |
| def visualize(self, image_bgr, bbox_xywh, color=None, thickness=None): | |
| x, y, w, h = bbox_xywh | |
| color = color or self.color | |
| thickness = thickness or self.thickness | |
| cv2.rectangle(image_bgr, (int(x), int(y)), (int(x + w), int(y + h)), color, thickness) | |
| return image_bgr | |
| class PointsVisualizer: | |
| _COLOR_GREEN = (18, 127, 15) | |
| def __init__(self, color_bgr=_COLOR_GREEN, r=5): | |
| self.color_bgr = color_bgr | |
| self.r = r | |
| def visualize(self, image_bgr, pts_xy, colors_bgr=None, rs=None): | |
| for j, pt_xy in enumerate(pts_xy): | |
| x, y = pt_xy | |
| color_bgr = colors_bgr[j] if colors_bgr is not None else self.color_bgr | |
| r = rs[j] if rs is not None else self.r | |
| cv2.circle(image_bgr, (x, y), r, color_bgr, -1) | |
| return image_bgr | |
| class TextVisualizer: | |
| _COLOR_GRAY = (218, 227, 218) | |
| _COLOR_WHITE = (255, 255, 255) | |
| def __init__( | |
| self, | |
| font_face=cv2.FONT_HERSHEY_SIMPLEX, | |
| font_color_bgr=_COLOR_GRAY, | |
| font_scale=0.35, | |
| font_line_type=cv2.LINE_AA, | |
| font_line_thickness=1, | |
| fill_color_bgr=_COLOR_WHITE, | |
| fill_color_transparency=1.0, | |
| frame_color_bgr=_COLOR_WHITE, | |
| frame_color_transparency=1.0, | |
| frame_thickness=1, | |
| ): | |
| self.font_face = font_face | |
| self.font_color_bgr = font_color_bgr | |
| self.font_scale = font_scale | |
| self.font_line_type = font_line_type | |
| self.font_line_thickness = font_line_thickness | |
| self.fill_color_bgr = fill_color_bgr | |
| self.fill_color_transparency = fill_color_transparency | |
| self.frame_color_bgr = frame_color_bgr | |
| self.frame_color_transparency = frame_color_transparency | |
| self.frame_thickness = frame_thickness | |
| def visualize(self, image_bgr, txt, topleft_xy): | |
| txt_w, txt_h = self.get_text_size_wh(txt) | |
| topleft_xy = tuple(map(int, topleft_xy)) | |
| x, y = topleft_xy | |
| if self.frame_color_transparency < 1.0: | |
| t = self.frame_thickness | |
| image_bgr[y - t : y + txt_h + t, x - t : x + txt_w + t, :] = ( | |
| image_bgr[y - t : y + txt_h + t, x - t : x + txt_w + t, :] | |
| * self.frame_color_transparency | |
| + np.array(self.frame_color_bgr) * (1.0 - self.frame_color_transparency) | |
| ).astype(float) | |
| if self.fill_color_transparency < 1.0: | |
| image_bgr[y : y + txt_h, x : x + txt_w, :] = ( | |
| image_bgr[y : y + txt_h, x : x + txt_w, :] * self.fill_color_transparency | |
| + np.array(self.fill_color_bgr) * (1.0 - self.fill_color_transparency) | |
| ).astype(float) | |
| cv2.putText( | |
| image_bgr, | |
| txt, | |
| topleft_xy, | |
| self.font_face, | |
| self.font_scale, | |
| self.font_color_bgr, | |
| self.font_line_thickness, | |
| self.font_line_type, | |
| ) | |
| return image_bgr | |
| def get_text_size_wh(self, txt): | |
| ((txt_w, txt_h), _) = cv2.getTextSize( | |
| txt, self.font_face, self.font_scale, self.font_line_thickness | |
| ) | |
| return txt_w, txt_h | |
| class CompoundVisualizer: | |
| def __init__(self, visualizers): | |
| self.visualizers = visualizers | |
| def visualize(self, image_bgr, data): | |
| assert len(data) == len( | |
| self.visualizers | |
| ), "The number of datas {} should match the number of visualizers" " {}".format( | |
| len(data), len(self.visualizers) | |
| ) | |
| image = image_bgr | |
| for i, visualizer in enumerate(self.visualizers): | |
| image = visualizer.visualize(image, data[i]) | |
| return image | |
| def __str__(self): | |
| visualizer_str = ", ".join([str(v) for v in self.visualizers]) | |
| return "Compound Visualizer [{}]".format(visualizer_str) | |