File size: 3,156 Bytes
7c447a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
import React, { createContext, useContext, useMemo, useState } from 'react';
import type { JobConfig, JobResult } from '../types';
import { MLBiasAPI } from '../services/api';
type PipelinePlots = {
original_sentiment: string;
counterfactual_sentiment: string;
};
type PipelineResultsDTO = {
generation_file: string;
sentiment_subset_file: string;
cf_sentiment_subset_file: string;
metrics: {
finalMeanDiff: number;
cfFinalMeanDiff: number;
reductionPct?: number;
stableCoverage?: number;
};
plots: PipelinePlots;
finetuned_model_zip?: string;
finetuned_model_dir?: string;
run_config_files?: {
json?: string;
markdown?: string;
};
};
type PipelineResponseDTO = {
status: 'success' | 'error';
message: string;
timestamp: string;
results: PipelineResultsDTO;
};
type Extras = {
datasetLimit: number
};
type Ctx = {
result: JobResult | null;
resp?: PipelineResponseDTO;
loading: boolean;
error?: string;
start: (cfg: JobConfig, extras: Extras) => Promise<void>;
url: (p?: string) => string;
};
const JobRunnerContext = createContext<Ctx | undefined>(undefined);
export function JobRunnerProvider({ children }: { children: React.ReactNode }) {
const [result, setResult] = useState<JobResult | null>(null);
const [resp, setResp] = useState<PipelineResponseDTO | undefined>();
const [loading, setLoading] = useState(false);
const [error, setErr] = useState<string | undefined>();
const start: Ctx['start'] = async (cfg, extras) => {
setLoading(true);
setErr(undefined);
setResp(undefined);
const now = new Date().toISOString();
setResult({
id: crypto.randomUUID(),
status: 'running',
progress: 0,
config: cfg,
createdAt: now,
updatedAt: now,
});
try {
const cfgToSend = {
...cfg,
datasetLimit: extras.datasetLimit
} as unknown as JobConfig;
const r = await MLBiasAPI.runPipeline(cfgToSend as any);
setResp(r);
const done = new Date().toISOString();
setResult((prev) => ({
...(prev as JobResult),
status: 'completed',
progress: 100,
updatedAt: done,
completedAt: done,
metrics: {
finalMeanDiff: r.results.metrics.finalMeanDiff,
reductionPct: r.results.metrics.reductionPct ?? 0,
stableCoverage: r.results.metrics.stableCoverage ?? 100,
},
}));
} catch (e: any) {
setErr(e.message || String(e));
setResult((prev) =>
prev
? { ...prev, status: 'failed', progress: 100, updatedAt: new Date().toISOString() }
: prev
);
} finally {
setLoading(false);
}
};
const url = MLBiasAPI.resolvePath;
const value = useMemo<Ctx>(
() => ({ result, resp, loading, error, start, url }),
[result, resp, loading, error]
);
return <JobRunnerContext.Provider value={value}>{children}</JobRunnerContext.Provider>;
}
export function useJobRunner() {
const ctx = useContext(JobRunnerContext);
if (!ctx) throw new Error('useJobRunner must be used within JobRunnerProvider');
return ctx;
}
|