File size: 6,129 Bytes
7c447a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import { useEffect, useMemo, useRef, useState } from 'react';
import type { JobConfig, JobResult } from '../types';
import type { PipelineResponseDTO } from '../services/api';
import { MLBiasAPI } from '../services/api';
type HealthLike = {
job_id?: string;
timestamp?: string;
updated_at?: string;
dataset_loaded?: boolean;
loaded_models?: string[];
generation_results_available?: boolean;
finetune_running?: boolean;
steps?: Record<string, boolean | 'todo' | 'doing' | 'done'>;
completed?: boolean;
status?: string;
};
type UseJobRunnerReturn = {
result: JobResult | null;
resp: PipelineResponseDTO | undefined;
loading: boolean;
error?: string;
start: (config: JobConfig) => Promise<void>;
cancel: () => void;
jobId: string | null;
live: {
health: HealthLike | null;
steps: Record<string, boolean>;
updatedAt: string | null;
finetuneRunning: boolean;
progressPercent: number;
};
url: typeof MLBiasAPI.resolvePath;
};
export function useJobRunner(): UseJobRunnerReturn {
const [jobId, setJobId] = useState<string | null>(null);
const [result, setResult] = useState<JobResult | null>(null);
const [resp, setResp] = useState<PipelineResponseDTO | undefined>();
const [loading, setLoading] = useState(false);
const [error, setErr] = useState<string | undefined>();
const [health, setHealth] = useState<HealthLike | null>(null);
const pollRef = useRef<number | null>(null);
const aliveRef = useRef<boolean>(false);
const stopPolling = () => {
if (pollRef.current) {
window.clearInterval(pollRef.current);
pollRef.current = null;
}
aliveRef.current = false;
};
const cancel = () => {
stopPolling();
setLoading(false);
};
const progressPercent = useMemo(() => {
const s = (health?.steps as Record<string, boolean | string>) || {};
const keys = Object.keys(s);
if (keys.length === 0) return result?.progress ?? 0;
let score = 0;
keys.forEach((k) => {
const v = s[k];
if (v === true || v === 'done') score += 1;
else if (v === 'doing') score += 0.5;
});
return Math.max(0, Math.min(100, Math.round((score / keys.length) * 100)));
}, [health?.steps, result?.progress]);
const liveSteps: Record<string, boolean> = useMemo(() => {
const fromResp = ((resp?.results as any)?.steps || {}) as Record<string, boolean>;
const fromHealth = ((health?.steps || {}) as Record<string, boolean | string>);
const normalized: Record<string, boolean> = {};
Object.keys(fromResp).forEach((k) => (normalized[k] = !!(fromResp as any)[k]));
Object.keys(fromHealth).forEach((k) => {
const v = (fromHealth as any)[k];
normalized[k] = v === true || v === 'done' || v === 'doing';
});
return normalized;
}, [health?.steps, resp?.results]);
const pollOnce = async () => {
try {
const h = (await MLBiasAPI.checkHealth()) as HealthLike;
setHealth((prev) => (JSON.stringify(prev) === JSON.stringify(h) ? prev : h));
const steps = (h?.steps || {}) as Record<string, boolean | string>;
const plotsDone =
!!steps['6_plots_and_metrics'] ||
(resp?.results as any)?.plots_ready ||
((resp?.results as any)?.plot_urls?.length ?? 0) > 0;
const r4 = !!steps['4_rank_sampling_original'];
const r5 = !!steps['5_rank_sampling_cf'];
const samplingDone = r4 && r5;
const genAvailable = !!h?.generation_results_available;
const ftMaybeDone =
!!steps['7_finetune'] ||
(resp?.results as any)?.finetune_done ||
(resp?.results as any)?.finetune?.completed;
const declaredCompleted = h?.completed === true || h?.status === 'completed';
if (declaredCompleted || plotsDone || samplingDone || (genAvailable && ftMaybeDone)) {
stopPolling();
setLoading(false);
}
} catch (e: any) {
setErr((e && e.message) || String(e));
}
};
const start = async (config: JobConfig) => {
setLoading(true);
setErr(undefined);
const now = new Date().toISOString();
const provisionalId = crypto.randomUUID();
setResult({
id: provisionalId,
status: 'running',
progress: 0,
config,
createdAt: now,
updatedAt: now,
});
setResp(undefined);
setHealth(null);
try {
const runResp: any = await MLBiasAPI.runPipeline(config);
const jid: string | undefined =
runResp?.jobId || runResp?.job_id || runResp?.results?.jobId || runResp?.results?.job_id;
setJobId(jid || provisionalId);
if (runResp?.results?.metrics) {
const final = runResp as PipelineResponseDTO;
const now2 = new Date().toISOString();
setResp(final);
setResult({
id: jid || provisionalId,
status: 'completed',
progress: 100,
config,
createdAt: now,
updatedAt: now2,
completedAt: now2,
metrics: {
finalMeanDiff: final.results.metrics.finalMeanDiff,
reductionPct: final.results.metrics.reductionPct ?? 0,
stableCoverage: final.results.metrics.stableCoverage ?? 100,
},
});
setLoading(false);
return;
}
aliveRef.current = true;
await pollOnce();
if (aliveRef.current) {
pollRef.current = window.setInterval(pollOnce, 1000);
}
} catch (e: any) {
setErr(e?.message || String(e));
setResult((prev) =>
prev
? { ...prev, status: 'failed', progress: 100, updatedAt: new Date().toISOString() }
: null
);
setLoading(false);
}
};
useEffect(() => stopPolling, []);
const url = MLBiasAPI.resolvePath;
return {
result,
resp,
loading,
error,
start,
cancel,
jobId,
live: {
health,
steps: liveSteps,
updatedAt: (health && (health.updated_at || health.timestamp)) || null,
finetuneRunning: !!(health?.finetune_running || (resp as any)?.results?.finetune?.running),
progressPercent,
},
url,
};
}
|