Spaces:
Runtime error
Runtime error
| """ Bring-Your-Own-Attention Network | |
| A flexible network w/ dataclass based config for stacking NN blocks including | |
| self-attention (or similar) layers. | |
| Currently used to implement experimential variants of: | |
| * Bottleneck Transformers | |
| * Lambda ResNets | |
| * HaloNets | |
| Consider all of the models definitions here as experimental WIP and likely to change. | |
| Hacked together by / copyright Ross Wightman, 2021. | |
| """ | |
| from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | |
| from .byobnet import ByoBlockCfg, ByoModelCfg, ByobNet, interleave_blocks | |
| from .helpers import build_model_with_cfg | |
| from .registry import register_model | |
| __all__ = [] | |
| def _cfg(url='', **kwargs): | |
| return { | |
| 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), | |
| 'crop_pct': 0.875, 'interpolation': 'bicubic', | |
| 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, | |
| 'first_conv': 'stem.conv1.conv', 'classifier': 'head.fc', | |
| 'fixed_input_size': False, 'min_input_size': (3, 224, 224), | |
| **kwargs | |
| } | |
| default_cfgs = { | |
| # GPU-Efficient (ResNet) weights | |
| 'botnet26t_256': _cfg(url='', fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8)), | |
| 'botnet50ts_256': _cfg(url='', fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8)), | |
| 'eca_botnext26ts_256': _cfg(url='', fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8)), | |
| 'halonet_h1': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256)), | |
| 'halonet_h1_c4c5': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256)), | |
| 'halonet26t': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256)), | |
| 'halonet50ts': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256)), | |
| 'eca_halonext26ts': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256)), | |
| 'lambda_resnet26t': _cfg(url='', min_input_size=(3, 128, 128), input_size=(3, 256, 256), pool_size=(8, 8)), | |
| 'lambda_resnet50t': _cfg(url='', min_input_size=(3, 128, 128)), | |
| 'eca_lambda_resnext26ts': _cfg(url='', min_input_size=(3, 128, 128), input_size=(3, 256, 256), pool_size=(8, 8)), | |
| 'swinnet26t_256': _cfg(url='', fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8)), | |
| 'swinnet50ts_256': _cfg(url='', fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8)), | |
| 'eca_swinnext26ts_256': _cfg(url='', fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8)), | |
| 'rednet26t': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8)), | |
| 'rednet50ts': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8)), | |
| } | |
| model_cfgs = dict( | |
| botnet26t=ByoModelCfg( | |
| blocks=( | |
| ByoBlockCfg(type='bottle', d=3, c=256, s=1, gs=0, br=0.25), | |
| ByoBlockCfg(type='bottle', d=4, c=512, s=2, gs=0, br=0.25), | |
| interleave_blocks(types=('bottle', 'self_attn'), every=1, d=2, c=1024, s=2, gs=0, br=0.25), | |
| ByoBlockCfg(type='self_attn', d=3, c=2048, s=2, gs=0, br=0.25), | |
| ), | |
| stem_chs=64, | |
| stem_type='tiered', | |
| stem_pool='maxpool', | |
| num_features=0, | |
| fixed_input_size=True, | |
| self_attn_layer='bottleneck', | |
| self_attn_kwargs=dict() | |
| ), | |
| botnet50ts=ByoModelCfg( | |
| blocks=( | |
| ByoBlockCfg(type='bottle', d=3, c=256, s=2, gs=0, br=0.25), | |
| ByoBlockCfg(type='bottle', d=4, c=512, s=2, gs=0, br=0.25), | |
| interleave_blocks(types=('bottle', 'self_attn'), every=1, d=6, c=1024, s=2, gs=0, br=0.25), | |
| ByoBlockCfg(type='self_attn', d=3, c=2048, s=1, gs=0, br=0.25), | |
| ), | |
| stem_chs=64, | |
| stem_type='tiered', | |
| stem_pool='', | |
| num_features=0, | |
| fixed_input_size=True, | |
| act_layer='silu', | |
| self_attn_layer='bottleneck', | |
| self_attn_kwargs=dict() | |
| ), | |
| eca_botnext26ts=ByoModelCfg( | |
| blocks=( | |
| ByoBlockCfg(type='bottle', d=3, c=256, s=1, gs=16, br=0.25), | |
| ByoBlockCfg(type='bottle', d=4, c=512, s=2, gs=16, br=0.25), | |
| interleave_blocks(types=('bottle', 'self_attn'), every=1, d=2, c=1024, s=2, gs=16, br=0.25), | |
| ByoBlockCfg(type='self_attn', d=3, c=2048, s=2, gs=16, br=0.25), | |
| ), | |
| stem_chs=64, | |
| stem_type='tiered', | |
| stem_pool='maxpool', | |
| num_features=0, | |
| fixed_input_size=True, | |
| act_layer='silu', | |
| attn_layer='eca', | |
| self_attn_layer='bottleneck', | |
| self_attn_kwargs=dict() | |
| ), | |
| halonet_h1=ByoModelCfg( | |
| blocks=( | |
| ByoBlockCfg(type='self_attn', d=3, c=64, s=1, gs=0, br=1.0), | |
| ByoBlockCfg(type='self_attn', d=3, c=128, s=2, gs=0, br=1.0), | |
| ByoBlockCfg(type='self_attn', d=10, c=256, s=2, gs=0, br=1.0), | |
| ByoBlockCfg(type='self_attn', d=3, c=512, s=2, gs=0, br=1.0), | |
| ), | |
| stem_chs=64, | |
| stem_type='7x7', | |
| stem_pool='maxpool', | |
| num_features=0, | |
| self_attn_layer='halo', | |
| self_attn_kwargs=dict(block_size=8, halo_size=3), | |
| ), | |
| halonet_h1_c4c5=ByoModelCfg( | |
| blocks=( | |
| ByoBlockCfg(type='bottle', d=3, c=64, s=1, gs=0, br=1.0), | |
| ByoBlockCfg(type='bottle', d=3, c=128, s=2, gs=0, br=1.0), | |
| ByoBlockCfg(type='self_attn', d=10, c=256, s=2, gs=0, br=1.0), | |
| ByoBlockCfg(type='self_attn', d=3, c=512, s=2, gs=0, br=1.0), | |
| ), | |
| stem_chs=64, | |
| stem_type='tiered', | |
| stem_pool='maxpool', | |
| num_features=0, | |
| self_attn_layer='halo', | |
| self_attn_kwargs=dict(block_size=8, halo_size=3), | |
| ), | |
| halonet26t=ByoModelCfg( | |
| blocks=( | |
| ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25), | |
| ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=0, br=0.25), | |
| interleave_blocks(types=('bottle', 'self_attn'), every=1, d=2, c=1024, s=2, gs=0, br=0.25), | |
| ByoBlockCfg(type='self_attn', d=2, c=2048, s=2, gs=0, br=0.25), | |
| ), | |
| stem_chs=64, | |
| stem_type='tiered', | |
| stem_pool='maxpool', | |
| num_features=0, | |
| self_attn_layer='halo', | |
| self_attn_kwargs=dict(block_size=8, halo_size=2) # intended for 256x256 res | |
| ), | |
| halonet50ts=ByoModelCfg( | |
| blocks=( | |
| ByoBlockCfg(type='bottle', d=3, c=256, s=1, gs=0, br=0.25), | |
| ByoBlockCfg(type='bottle', d=4, c=512, s=2, gs=0, br=0.25), | |
| interleave_blocks(types=('bottle', 'self_attn'), every=1, d=6, c=1024, s=2, gs=0, br=0.25), | |
| ByoBlockCfg(type='self_attn', d=3, c=2048, s=2, gs=0, br=0.25), | |
| ), | |
| stem_chs=64, | |
| stem_type='tiered', | |
| stem_pool='maxpool', | |
| num_features=0, | |
| act_layer='silu', | |
| self_attn_layer='halo', | |
| self_attn_kwargs=dict(block_size=8, halo_size=2) | |
| ), | |
| eca_halonext26ts=ByoModelCfg( | |
| blocks=( | |
| ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=16, br=0.25), | |
| ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=16, br=0.25), | |
| interleave_blocks(types=('bottle', 'self_attn'), every=1, d=2, c=1024, s=2, gs=16, br=0.25), | |
| ByoBlockCfg(type='self_attn', d=2, c=2048, s=2, gs=16, br=0.25), | |
| ), | |
| stem_chs=64, | |
| stem_type='tiered', | |
| stem_pool='maxpool', | |
| num_features=0, | |
| act_layer='silu', | |
| attn_layer='eca', | |
| self_attn_layer='halo', | |
| self_attn_kwargs=dict(block_size=8, halo_size=2) # intended for 256x256 res | |
| ), | |
| lambda_resnet26t=ByoModelCfg( | |
| blocks=( | |
| ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25), | |
| ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=0, br=0.25), | |
| interleave_blocks(types=('bottle', 'self_attn'), every=1, d=2, c=1024, s=2, gs=0, br=0.25), | |
| ByoBlockCfg(type='self_attn', d=2, c=2048, s=2, gs=0, br=0.25), | |
| ), | |
| stem_chs=64, | |
| stem_type='tiered', | |
| stem_pool='maxpool', | |
| num_features=0, | |
| self_attn_layer='lambda', | |
| self_attn_kwargs=dict() | |
| ), | |
| lambda_resnet50t=ByoModelCfg( | |
| blocks=( | |
| ByoBlockCfg(type='bottle', d=3, c=256, s=1, gs=0, br=0.25), | |
| ByoBlockCfg(type='bottle', d=4, c=512, s=2, gs=0, br=0.25), | |
| interleave_blocks(types=('bottle', 'self_attn'), every=3, d=6, c=1024, s=2, gs=0, br=0.25), | |
| ByoBlockCfg(type='self_attn', d=3, c=2048, s=2, gs=0, br=0.25), | |
| ), | |
| stem_chs=64, | |
| stem_type='tiered', | |
| stem_pool='maxpool', | |
| num_features=0, | |
| self_attn_layer='lambda', | |
| self_attn_kwargs=dict() | |
| ), | |
| eca_lambda_resnext26ts=ByoModelCfg( | |
| blocks=( | |
| ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=16, br=0.25), | |
| ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=16, br=0.25), | |
| interleave_blocks(types=('bottle', 'self_attn'), every=1, d=2, c=1024, s=2, gs=16, br=0.25), | |
| ByoBlockCfg(type='self_attn', d=2, c=2048, s=2, gs=16, br=0.25), | |
| ), | |
| stem_chs=64, | |
| stem_type='tiered', | |
| stem_pool='maxpool', | |
| num_features=0, | |
| act_layer='silu', | |
| attn_layer='eca', | |
| self_attn_layer='lambda', | |
| self_attn_kwargs=dict() | |
| ), | |
| swinnet26t=ByoModelCfg( | |
| blocks=( | |
| ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25), | |
| interleave_blocks(types=('bottle', 'self_attn'), every=1, d=2, c=512, s=2, gs=0, br=0.25), | |
| interleave_blocks(types=('bottle', 'self_attn'), every=1, d=2, c=1024, s=2, gs=0, br=0.25), | |
| ByoBlockCfg(type='self_attn', d=2, c=2048, s=2, gs=0, br=0.25), | |
| ), | |
| stem_chs=64, | |
| stem_type='tiered', | |
| stem_pool='maxpool', | |
| num_features=0, | |
| fixed_input_size=True, | |
| self_attn_layer='swin', | |
| self_attn_kwargs=dict(win_size=8) | |
| ), | |
| swinnet50ts=ByoModelCfg( | |
| blocks=( | |
| ByoBlockCfg(type='bottle', d=3, c=256, s=1, gs=0, br=0.25), | |
| interleave_blocks(types=('bottle', 'self_attn'), every=1, d=4, c=512, s=2, gs=0, br=0.25), | |
| interleave_blocks(types=('bottle', 'self_attn'), every=1, d=2, c=1024, s=2, gs=0, br=0.25), | |
| ByoBlockCfg(type='self_attn', d=3, c=2048, s=2, gs=0, br=0.25), | |
| ), | |
| stem_chs=64, | |
| stem_type='tiered', | |
| stem_pool='maxpool', | |
| num_features=0, | |
| fixed_input_size=True, | |
| act_layer='silu', | |
| self_attn_layer='swin', | |
| self_attn_kwargs=dict(win_size=8) | |
| ), | |
| eca_swinnext26ts=ByoModelCfg( | |
| blocks=( | |
| ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=16, br=0.25), | |
| interleave_blocks(types=('bottle', 'self_attn'), every=1, d=2, c=512, s=2, gs=16, br=0.25), | |
| interleave_blocks(types=('bottle', 'self_attn'), every=1, d=2, c=1024, s=2, gs=16, br=0.25), | |
| ByoBlockCfg(type='self_attn', d=2, c=2048, s=2, gs=16, br=0.25), | |
| ), | |
| stem_chs=64, | |
| stem_type='tiered', | |
| stem_pool='maxpool', | |
| num_features=0, | |
| fixed_input_size=True, | |
| act_layer='silu', | |
| attn_layer='eca', | |
| self_attn_layer='swin', | |
| self_attn_kwargs=dict(win_size=8) | |
| ), | |
| rednet26t=ByoModelCfg( | |
| blocks=( | |
| ByoBlockCfg(type='self_attn', d=2, c=256, s=1, gs=0, br=0.25), | |
| ByoBlockCfg(type='self_attn', d=2, c=512, s=2, gs=0, br=0.25), | |
| ByoBlockCfg(type='self_attn', d=2, c=1024, s=2, gs=0, br=0.25), | |
| ByoBlockCfg(type='self_attn', d=2, c=2048, s=2, gs=0, br=0.25), | |
| ), | |
| stem_chs=64, | |
| stem_type='tiered', # FIXME RedNet uses involution in middle of stem | |
| stem_pool='maxpool', | |
| num_features=0, | |
| self_attn_layer='involution', | |
| self_attn_kwargs=dict() | |
| ), | |
| rednet50ts=ByoModelCfg( | |
| blocks=( | |
| ByoBlockCfg(type='self_attn', d=3, c=256, s=1, gs=0, br=0.25), | |
| ByoBlockCfg(type='self_attn', d=4, c=512, s=2, gs=0, br=0.25), | |
| ByoBlockCfg(type='self_attn', d=2, c=1024, s=2, gs=0, br=0.25), | |
| ByoBlockCfg(type='self_attn', d=3, c=2048, s=2, gs=0, br=0.25), | |
| ), | |
| stem_chs=64, | |
| stem_type='tiered', | |
| stem_pool='maxpool', | |
| num_features=0, | |
| act_layer='silu', | |
| self_attn_layer='involution', | |
| self_attn_kwargs=dict() | |
| ), | |
| ) | |
| def _create_byoanet(variant, cfg_variant=None, pretrained=False, **kwargs): | |
| return build_model_with_cfg( | |
| ByobNet, variant, pretrained, | |
| default_cfg=default_cfgs[variant], | |
| model_cfg=model_cfgs[variant] if not cfg_variant else model_cfgs[cfg_variant], | |
| feature_cfg=dict(flatten_sequential=True), | |
| **kwargs) | |
| def botnet26t_256(pretrained=False, **kwargs): | |
| """ Bottleneck Transformer w/ ResNet26-T backbone. Bottleneck attn in final stage. | |
| """ | |
| kwargs.setdefault('img_size', 256) | |
| return _create_byoanet('botnet26t_256', 'botnet26t', pretrained=pretrained, **kwargs) | |
| def botnet50ts_256(pretrained=False, **kwargs): | |
| """ Bottleneck Transformer w/ ResNet50-T backbone. Bottleneck attn in final stage. | |
| """ | |
| kwargs.setdefault('img_size', 256) | |
| return _create_byoanet('botnet50ts_256', 'botnet50ts', pretrained=pretrained, **kwargs) | |
| def eca_botnext26ts_256(pretrained=False, **kwargs): | |
| """ Bottleneck Transformer w/ ResNet26-T backbone. Bottleneck attn in final stage. | |
| """ | |
| kwargs.setdefault('img_size', 256) | |
| return _create_byoanet('eca_botnext26ts_256', 'eca_botnext26ts', pretrained=pretrained, **kwargs) | |
| def halonet_h1(pretrained=False, **kwargs): | |
| """ HaloNet-H1. Halo attention in all stages as per the paper. | |
| This runs very slowly, param count lower than paper --> something is wrong. | |
| """ | |
| return _create_byoanet('halonet_h1', pretrained=pretrained, **kwargs) | |
| def halonet_h1_c4c5(pretrained=False, **kwargs): | |
| """ HaloNet-H1 config w/ attention in last two stages. | |
| """ | |
| return _create_byoanet('halonet_h1_c4c5', pretrained=pretrained, **kwargs) | |
| def halonet26t(pretrained=False, **kwargs): | |
| """ HaloNet w/ a ResNet26-t backbone, Hallo attention in final stage | |
| """ | |
| return _create_byoanet('halonet26t', pretrained=pretrained, **kwargs) | |
| def halonet50ts(pretrained=False, **kwargs): | |
| """ HaloNet w/ a ResNet50-t backbone, Hallo attention in final stage | |
| """ | |
| return _create_byoanet('halonet50ts', pretrained=pretrained, **kwargs) | |
| def eca_halonext26ts(pretrained=False, **kwargs): | |
| """ HaloNet w/ a ResNet26-t backbone, Hallo attention in final stage | |
| """ | |
| return _create_byoanet('eca_halonext26ts', pretrained=pretrained, **kwargs) | |
| def lambda_resnet26t(pretrained=False, **kwargs): | |
| """ Lambda-ResNet-26T. Lambda layers in one C4 stage and all C5. | |
| """ | |
| return _create_byoanet('lambda_resnet26t', pretrained=pretrained, **kwargs) | |
| def lambda_resnet50t(pretrained=False, **kwargs): | |
| """ Lambda-ResNet-50T. Lambda layers in one C4 stage and all C5. | |
| """ | |
| return _create_byoanet('lambda_resnet50t', pretrained=pretrained, **kwargs) | |
| def eca_lambda_resnext26ts(pretrained=False, **kwargs): | |
| """ Lambda-ResNet-26T. Lambda layers in one C4 stage and all C5. | |
| """ | |
| return _create_byoanet('eca_lambda_resnext26ts', pretrained=pretrained, **kwargs) | |
| def swinnet26t_256(pretrained=False, **kwargs): | |
| """ | |
| """ | |
| kwargs.setdefault('img_size', 256) | |
| return _create_byoanet('swinnet26t_256', 'swinnet26t', pretrained=pretrained, **kwargs) | |
| def swinnet50ts_256(pretrained=False, **kwargs): | |
| """ | |
| """ | |
| kwargs.setdefault('img_size', 256) | |
| return _create_byoanet('swinnet50ts_256', 'swinnet50ts', pretrained=pretrained, **kwargs) | |
| def eca_swinnext26ts_256(pretrained=False, **kwargs): | |
| """ | |
| """ | |
| kwargs.setdefault('img_size', 256) | |
| return _create_byoanet('eca_swinnext26ts_256', 'eca_swinnext26ts', pretrained=pretrained, **kwargs) | |
| def rednet26t(pretrained=False, **kwargs): | |
| """ | |
| """ | |
| return _create_byoanet('rednet26t', pretrained=pretrained, **kwargs) | |
| def rednet50ts(pretrained=False, **kwargs): | |
| """ | |
| """ | |
| return _create_byoanet('rednet50ts', pretrained=pretrained, **kwargs) | |