Spaces:
Runtime error
Runtime error
| """ Class-Attention in Image Transformers (CaiT) | |
| Paper: 'Going deeper with Image Transformers' - https://arxiv.org/abs/2103.17239 | |
| Original code and weights from https://github.com/facebookresearch/deit, copyright below | |
| """ | |
| # Copyright (c) 2015-present, Facebook, Inc. | |
| # All rights reserved. | |
| from copy import deepcopy | |
| import torch | |
| import torch.nn as nn | |
| from functools import partial | |
| from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | |
| from .helpers import build_model_with_cfg, overlay_external_default_cfg | |
| from .layers import PatchEmbed, Mlp, DropPath, trunc_normal_ | |
| from .registry import register_model | |
| __all__ = ['Cait', 'ClassAttn', 'LayerScaleBlockClassAttn', 'LayerScaleBlock', 'TalkingHeadAttn'] | |
| def _cfg(url='', **kwargs): | |
| return { | |
| 'url': url, | |
| 'num_classes': 1000, 'input_size': (3, 384, 384), 'pool_size': None, | |
| 'crop_pct': 1.0, 'interpolation': 'bicubic', 'fixed_input_size': True, | |
| 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, | |
| 'first_conv': 'patch_embed.proj', 'classifier': 'head', | |
| **kwargs | |
| } | |
| default_cfgs = dict( | |
| cait_xxs24_224=_cfg( | |
| url='https://dl.fbaipublicfiles.com/deit/XXS24_224.pth', | |
| input_size=(3, 224, 224), | |
| ), | |
| cait_xxs24_384=_cfg( | |
| url='https://dl.fbaipublicfiles.com/deit/XXS24_384.pth', | |
| ), | |
| cait_xxs36_224=_cfg( | |
| url='https://dl.fbaipublicfiles.com/deit/XXS36_224.pth', | |
| input_size=(3, 224, 224), | |
| ), | |
| cait_xxs36_384=_cfg( | |
| url='https://dl.fbaipublicfiles.com/deit/XXS36_384.pth', | |
| ), | |
| cait_xs24_384=_cfg( | |
| url='https://dl.fbaipublicfiles.com/deit/XS24_384.pth', | |
| ), | |
| cait_s24_224=_cfg( | |
| url='https://dl.fbaipublicfiles.com/deit/S24_224.pth', | |
| input_size=(3, 224, 224), | |
| ), | |
| cait_s24_384=_cfg( | |
| url='https://dl.fbaipublicfiles.com/deit/S24_384.pth', | |
| ), | |
| cait_s36_384=_cfg( | |
| url='https://dl.fbaipublicfiles.com/deit/S36_384.pth', | |
| ), | |
| cait_m36_384=_cfg( | |
| url='https://dl.fbaipublicfiles.com/deit/M36_384.pth', | |
| ), | |
| cait_m48_448=_cfg( | |
| url='https://dl.fbaipublicfiles.com/deit/M48_448.pth', | |
| input_size=(3, 448, 448), | |
| ), | |
| ) | |
| class ClassAttn(nn.Module): | |
| # taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py | |
| # with slight modifications to do CA | |
| def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.): | |
| super().__init__() | |
| self.num_heads = num_heads | |
| head_dim = dim // num_heads | |
| self.scale = head_dim ** -0.5 | |
| self.q = nn.Linear(dim, dim, bias=qkv_bias) | |
| self.k = nn.Linear(dim, dim, bias=qkv_bias) | |
| self.v = nn.Linear(dim, dim, bias=qkv_bias) | |
| self.attn_drop = nn.Dropout(attn_drop) | |
| self.proj = nn.Linear(dim, dim) | |
| self.proj_drop = nn.Dropout(proj_drop) | |
| def forward(self, x): | |
| B, N, C = x.shape | |
| q = self.q(x[:, 0]).unsqueeze(1).reshape(B, 1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) | |
| k = self.k(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) | |
| q = q * self.scale | |
| v = self.v(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) | |
| attn = (q @ k.transpose(-2, -1)) | |
| attn = attn.softmax(dim=-1) | |
| attn = self.attn_drop(attn) | |
| x_cls = (attn @ v).transpose(1, 2).reshape(B, 1, C) | |
| x_cls = self.proj(x_cls) | |
| x_cls = self.proj_drop(x_cls) | |
| return x_cls | |
| class LayerScaleBlockClassAttn(nn.Module): | |
| # taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py | |
| # with slight modifications to add CA and LayerScale | |
| def __init__( | |
| self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., | |
| drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, attn_block=ClassAttn, | |
| mlp_block=Mlp, init_values=1e-4): | |
| super().__init__() | |
| self.norm1 = norm_layer(dim) | |
| self.attn = attn_block( | |
| dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) | |
| self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
| self.norm2 = norm_layer(dim) | |
| mlp_hidden_dim = int(dim * mlp_ratio) | |
| self.mlp = mlp_block(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
| self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True) | |
| self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True) | |
| def forward(self, x, x_cls): | |
| u = torch.cat((x_cls, x), dim=1) | |
| x_cls = x_cls + self.drop_path(self.gamma_1 * self.attn(self.norm1(u))) | |
| x_cls = x_cls + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x_cls))) | |
| return x_cls | |
| class TalkingHeadAttn(nn.Module): | |
| # taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py | |
| # with slight modifications to add Talking Heads Attention (https://arxiv.org/pdf/2003.02436v1.pdf) | |
| def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.): | |
| super().__init__() | |
| self.num_heads = num_heads | |
| head_dim = dim // num_heads | |
| self.scale = head_dim ** -0.5 | |
| self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
| self.attn_drop = nn.Dropout(attn_drop) | |
| self.proj = nn.Linear(dim, dim) | |
| self.proj_l = nn.Linear(num_heads, num_heads) | |
| self.proj_w = nn.Linear(num_heads, num_heads) | |
| self.proj_drop = nn.Dropout(proj_drop) | |
| def forward(self, x): | |
| B, N, C = x.shape | |
| qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
| q, k, v = qkv[0] * self.scale, qkv[1], qkv[2] | |
| attn = (q @ k.transpose(-2, -1)) | |
| attn = self.proj_l(attn.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) | |
| attn = attn.softmax(dim=-1) | |
| attn = self.proj_w(attn.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) | |
| attn = self.attn_drop(attn) | |
| x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
| x = self.proj(x) | |
| x = self.proj_drop(x) | |
| return x | |
| class LayerScaleBlock(nn.Module): | |
| # taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py | |
| # with slight modifications to add layerScale | |
| def __init__( | |
| self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., | |
| drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, attn_block=TalkingHeadAttn, | |
| mlp_block=Mlp, init_values=1e-4): | |
| super().__init__() | |
| self.norm1 = norm_layer(dim) | |
| self.attn = attn_block( | |
| dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) | |
| self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
| self.norm2 = norm_layer(dim) | |
| mlp_hidden_dim = int(dim * mlp_ratio) | |
| self.mlp = mlp_block(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
| self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True) | |
| self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True) | |
| def forward(self, x): | |
| x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x))) | |
| x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) | |
| return x | |
| class Cait(nn.Module): | |
| # taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py | |
| # with slight modifications to adapt to our cait models | |
| def __init__( | |
| self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, | |
| num_heads=12, mlp_ratio=4., qkv_bias=True, drop_rate=0., attn_drop_rate=0., | |
| drop_path_rate=0., | |
| norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
| global_pool=None, | |
| block_layers=LayerScaleBlock, | |
| block_layers_token=LayerScaleBlockClassAttn, | |
| patch_layer=PatchEmbed, | |
| act_layer=nn.GELU, | |
| attn_block=TalkingHeadAttn, | |
| mlp_block=Mlp, | |
| init_scale=1e-4, | |
| attn_block_token_only=ClassAttn, | |
| mlp_block_token_only=Mlp, | |
| depth_token_only=2, | |
| mlp_ratio_clstk=4.0 | |
| ): | |
| super().__init__() | |
| self.num_classes = num_classes | |
| self.num_features = self.embed_dim = embed_dim | |
| self.patch_embed = patch_layer( | |
| img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) | |
| num_patches = self.patch_embed.num_patches | |
| self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) | |
| self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) | |
| self.pos_drop = nn.Dropout(p=drop_rate) | |
| dpr = [drop_path_rate for i in range(depth)] | |
| self.blocks = nn.ModuleList([ | |
| block_layers( | |
| dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, | |
| drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, | |
| act_layer=act_layer, attn_block=attn_block, mlp_block=mlp_block, init_values=init_scale) | |
| for i in range(depth)]) | |
| self.blocks_token_only = nn.ModuleList([ | |
| block_layers_token( | |
| dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio_clstk, qkv_bias=qkv_bias, | |
| drop=0.0, attn_drop=0.0, drop_path=0.0, norm_layer=norm_layer, | |
| act_layer=act_layer, attn_block=attn_block_token_only, | |
| mlp_block=mlp_block_token_only, init_values=init_scale) | |
| for i in range(depth_token_only)]) | |
| self.norm = norm_layer(embed_dim) | |
| self.feature_info = [dict(num_chs=embed_dim, reduction=0, module='head')] | |
| self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
| trunc_normal_(self.pos_embed, std=.02) | |
| trunc_normal_(self.cls_token, std=.02) | |
| self.apply(self._init_weights) | |
| def _init_weights(self, m): | |
| if isinstance(m, nn.Linear): | |
| trunc_normal_(m.weight, std=.02) | |
| if isinstance(m, nn.Linear) and m.bias is not None: | |
| nn.init.constant_(m.bias, 0) | |
| elif isinstance(m, nn.LayerNorm): | |
| nn.init.constant_(m.bias, 0) | |
| nn.init.constant_(m.weight, 1.0) | |
| def no_weight_decay(self): | |
| return {'pos_embed', 'cls_token'} | |
| def get_classifier(self): | |
| return self.head | |
| def reset_classifier(self, num_classes, global_pool=''): | |
| self.num_classes = num_classes | |
| self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() | |
| def forward_features(self, x): | |
| B = x.shape[0] | |
| x = self.patch_embed(x) | |
| cls_tokens = self.cls_token.expand(B, -1, -1) | |
| x = x + self.pos_embed | |
| x = self.pos_drop(x) | |
| for i, blk in enumerate(self.blocks): | |
| x = blk(x) | |
| for i, blk in enumerate(self.blocks_token_only): | |
| cls_tokens = blk(x, cls_tokens) | |
| x = torch.cat((cls_tokens, x), dim=1) | |
| x = self.norm(x) | |
| return x[:, 0] | |
| def forward(self, x): | |
| x = self.forward_features(x) | |
| x = self.head(x) | |
| return x | |
| def checkpoint_filter_fn(state_dict, model=None): | |
| if 'model' in state_dict: | |
| state_dict = state_dict['model'] | |
| checkpoint_no_module = {} | |
| for k, v in state_dict.items(): | |
| checkpoint_no_module[k.replace('module.', '')] = v | |
| return checkpoint_no_module | |
| def _create_cait(variant, pretrained=False, **kwargs): | |
| if kwargs.get('features_only', None): | |
| raise RuntimeError('features_only not implemented for Vision Transformer models.') | |
| model = build_model_with_cfg( | |
| Cait, variant, pretrained, | |
| default_cfg=default_cfgs[variant], | |
| pretrained_filter_fn=checkpoint_filter_fn, | |
| **kwargs) | |
| return model | |
| def cait_xxs24_224(pretrained=False, **kwargs): | |
| model_args = dict(patch_size=16, embed_dim=192, depth=24, num_heads=4, init_scale=1e-5, **kwargs) | |
| model = _create_cait('cait_xxs24_224', pretrained=pretrained, **model_args) | |
| return model | |
| def cait_xxs24_384(pretrained=False, **kwargs): | |
| model_args = dict(patch_size=16, embed_dim=192, depth=24, num_heads=4, init_scale=1e-5, **kwargs) | |
| model = _create_cait('cait_xxs24_384', pretrained=pretrained, **model_args) | |
| return model | |
| def cait_xxs36_224(pretrained=False, **kwargs): | |
| model_args = dict(patch_size=16, embed_dim=192, depth=36, num_heads=4, init_scale=1e-5, **kwargs) | |
| model = _create_cait('cait_xxs36_224', pretrained=pretrained, **model_args) | |
| return model | |
| def cait_xxs36_384(pretrained=False, **kwargs): | |
| model_args = dict(patch_size=16, embed_dim=192, depth=36, num_heads=4, init_scale=1e-5, **kwargs) | |
| model = _create_cait('cait_xxs36_384', pretrained=pretrained, **model_args) | |
| return model | |
| def cait_xs24_384(pretrained=False, **kwargs): | |
| model_args = dict(patch_size=16, embed_dim=288, depth=24, num_heads=6, init_scale=1e-5, **kwargs) | |
| model = _create_cait('cait_xs24_384', pretrained=pretrained, **model_args) | |
| return model | |
| def cait_s24_224(pretrained=False, **kwargs): | |
| model_args = dict(patch_size=16, embed_dim=384, depth=24, num_heads=8, init_scale=1e-5, **kwargs) | |
| model = _create_cait('cait_s24_224', pretrained=pretrained, **model_args) | |
| return model | |
| def cait_s24_384(pretrained=False, **kwargs): | |
| model_args = dict(patch_size=16, embed_dim=384, depth=24, num_heads=8, init_scale=1e-5, **kwargs) | |
| model = _create_cait('cait_s24_384', pretrained=pretrained, **model_args) | |
| return model | |
| def cait_s36_384(pretrained=False, **kwargs): | |
| model_args = dict(patch_size=16, embed_dim=384, depth=36, num_heads=8, init_scale=1e-6, **kwargs) | |
| model = _create_cait('cait_s36_384', pretrained=pretrained, **model_args) | |
| return model | |
| def cait_m36_384(pretrained=False, **kwargs): | |
| model_args = dict(patch_size=16, embed_dim=768, depth=36, num_heads=16, init_scale=1e-6, **kwargs) | |
| model = _create_cait('cait_m36_384', pretrained=pretrained, **model_args) | |
| return model | |
| def cait_m48_448(pretrained=False, **kwargs): | |
| model_args = dict(patch_size=16, embed_dim=768, depth=48, num_heads=16, init_scale=1e-6, **kwargs) | |
| model = _create_cait('cait_m48_448', pretrained=pretrained, **model_args) | |
| return model | |