Spaces:
Runtime error
Runtime error
| import torch.nn as nn | |
| from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | |
| from timm.models.registry import register_model | |
| from .helpers import build_model_with_cfg | |
| def _cfg(url='', **kwargs): | |
| return { | |
| 'url': url, | |
| 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, | |
| 'crop_pct': .96, 'interpolation': 'bicubic', | |
| 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'classifier': 'head', | |
| 'first_conv': 'stem.0', | |
| **kwargs | |
| } | |
| default_cfgs = { | |
| 'convmixer_1536_20': _cfg(url='https://github.com/tmp-iclr/convmixer/releases/download/timm-v1.0/convmixer_1536_20_ks9_p7.pth.tar'), | |
| 'convmixer_768_32': _cfg(url='https://github.com/tmp-iclr/convmixer/releases/download/timm-v1.0/convmixer_768_32_ks7_p7_relu.pth.tar'), | |
| 'convmixer_1024_20_ks9_p14': _cfg(url='https://github.com/tmp-iclr/convmixer/releases/download/timm-v1.0/convmixer_1024_20_ks9_p14.pth.tar') | |
| } | |
| class Residual(nn.Module): | |
| def __init__(self, fn): | |
| super().__init__() | |
| self.fn = fn | |
| def forward(self, x): | |
| return self.fn(x) + x | |
| class ConvMixer(nn.Module): | |
| def __init__(self, dim, depth, kernel_size=9, patch_size=7, in_chans=3, num_classes=1000, activation=nn.GELU, **kwargs): | |
| super().__init__() | |
| self.num_classes = num_classes | |
| self.num_features = dim | |
| self.head = nn.Linear(dim, num_classes) if num_classes > 0 else nn.Identity() | |
| self.stem = nn.Sequential( | |
| nn.Conv2d(in_chans, dim, kernel_size=patch_size, stride=patch_size), | |
| activation(), | |
| nn.BatchNorm2d(dim) | |
| ) | |
| self.blocks = nn.Sequential( | |
| *[nn.Sequential( | |
| Residual(nn.Sequential( | |
| nn.Conv2d(dim, dim, kernel_size, groups=dim, padding="same"), | |
| activation(), | |
| nn.BatchNorm2d(dim) | |
| )), | |
| nn.Conv2d(dim, dim, kernel_size=1), | |
| activation(), | |
| nn.BatchNorm2d(dim) | |
| ) for i in range(depth)] | |
| ) | |
| self.pooling = nn.Sequential( | |
| nn.AdaptiveAvgPool2d((1, 1)), | |
| nn.Flatten() | |
| ) | |
| def get_classifier(self): | |
| return self.head | |
| def reset_classifier(self, num_classes, global_pool=''): | |
| self.num_classes = num_classes | |
| self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() | |
| def forward_features(self, x): | |
| x = self.stem(x) | |
| x = self.blocks(x) | |
| x = self.pooling(x) | |
| return x | |
| def forward(self, x): | |
| x = self.forward_features(x) | |
| x = self.head(x) | |
| return x | |
| def _create_convmixer(variant, pretrained=False, **kwargs): | |
| return build_model_with_cfg(ConvMixer, variant, pretrained, default_cfg=default_cfgs[variant], **kwargs) | |
| def convmixer_1536_20(pretrained=False, **kwargs): | |
| model_args = dict(dim=1536, depth=20, kernel_size=9, patch_size=7, **kwargs) | |
| return _create_convmixer('convmixer_1536_20', pretrained, **model_args) | |
| def convmixer_768_32(pretrained=False, **kwargs): | |
| model_args = dict(dim=768, depth=32, kernel_size=7, patch_size=7, activation=nn.ReLU, **kwargs) | |
| return _create_convmixer('convmixer_768_32', pretrained, **model_args) | |
| def convmixer_1024_20_ks9_p14(pretrained=False, **kwargs): | |
| model_args = dict(dim=1024, depth=20, kernel_size=9, patch_size=14, **kwargs) | |
| return _create_convmixer('convmixer_1024_20_ks9_p14', pretrained, **model_args) |