Spaces:
Runtime error
Runtime error
| """Pytorch Densenet implementation w/ tweaks | |
| This file is a copy of https://github.com/pytorch/vision 'densenet.py' (BSD-3-Clause) with | |
| fixed kwargs passthrough and addition of dynamic global avg/max pool. | |
| """ | |
| import re | |
| from collections import OrderedDict | |
| from functools import partial | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import torch.utils.checkpoint as cp | |
| from torch.jit.annotations import List | |
| from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | |
| from .helpers import build_model_with_cfg | |
| from .layers import BatchNormAct2d, create_norm_act, BlurPool2d, create_classifier | |
| from .registry import register_model | |
| __all__ = ['DenseNet'] | |
| def _cfg(url=''): | |
| return { | |
| 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), | |
| 'crop_pct': 0.875, 'interpolation': 'bicubic', | |
| 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, | |
| 'first_conv': 'features.conv0', 'classifier': 'classifier', | |
| } | |
| default_cfgs = { | |
| 'densenet121': _cfg( | |
| url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/densenet121_ra-50efcf5c.pth'), | |
| 'densenet121d': _cfg(url=''), | |
| 'densenetblur121d': _cfg( | |
| url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/densenetblur121d_ra-100dcfbc.pth'), | |
| 'densenet169': _cfg(url='https://download.pytorch.org/models/densenet169-b2777c0a.pth'), | |
| 'densenet201': _cfg(url='https://download.pytorch.org/models/densenet201-c1103571.pth'), | |
| 'densenet161': _cfg(url='https://download.pytorch.org/models/densenet161-8d451a50.pth'), | |
| 'densenet264': _cfg(url=''), | |
| 'densenet264d_iabn': _cfg(url=''), | |
| 'tv_densenet121': _cfg(url='https://download.pytorch.org/models/densenet121-a639ec97.pth'), | |
| } | |
| class DenseLayer(nn.Module): | |
| def __init__(self, num_input_features, growth_rate, bn_size, norm_layer=BatchNormAct2d, | |
| drop_rate=0., memory_efficient=False): | |
| super(DenseLayer, self).__init__() | |
| self.add_module('norm1', norm_layer(num_input_features)), | |
| self.add_module('conv1', nn.Conv2d( | |
| num_input_features, bn_size * growth_rate, kernel_size=1, stride=1, bias=False)), | |
| self.add_module('norm2', norm_layer(bn_size * growth_rate)), | |
| self.add_module('conv2', nn.Conv2d( | |
| bn_size * growth_rate, growth_rate, kernel_size=3, stride=1, padding=1, bias=False)), | |
| self.drop_rate = float(drop_rate) | |
| self.memory_efficient = memory_efficient | |
| def bottleneck_fn(self, xs): | |
| # type: (List[torch.Tensor]) -> torch.Tensor | |
| concated_features = torch.cat(xs, 1) | |
| bottleneck_output = self.conv1(self.norm1(concated_features)) # noqa: T484 | |
| return bottleneck_output | |
| # todo: rewrite when torchscript supports any | |
| def any_requires_grad(self, x): | |
| # type: (List[torch.Tensor]) -> bool | |
| for tensor in x: | |
| if tensor.requires_grad: | |
| return True | |
| return False | |
| # noqa: T484 | |
| def call_checkpoint_bottleneck(self, x): | |
| # type: (List[torch.Tensor]) -> torch.Tensor | |
| def closure(*xs): | |
| return self.bottleneck_fn(xs) | |
| return cp.checkpoint(closure, *x) | |
| # noqa: F811 | |
| def forward(self, x): | |
| # type: (List[torch.Tensor]) -> (torch.Tensor) | |
| pass | |
| # noqa: F811 | |
| def forward(self, x): | |
| # type: (torch.Tensor) -> (torch.Tensor) | |
| pass | |
| # torchscript does not yet support *args, so we overload method | |
| # allowing it to take either a List[Tensor] or single Tensor | |
| def forward(self, x): # noqa: F811 | |
| if isinstance(x, torch.Tensor): | |
| prev_features = [x] | |
| else: | |
| prev_features = x | |
| if self.memory_efficient and self.any_requires_grad(prev_features): | |
| if torch.jit.is_scripting(): | |
| raise Exception("Memory Efficient not supported in JIT") | |
| bottleneck_output = self.call_checkpoint_bottleneck(prev_features) | |
| else: | |
| bottleneck_output = self.bottleneck_fn(prev_features) | |
| new_features = self.conv2(self.norm2(bottleneck_output)) | |
| if self.drop_rate > 0: | |
| new_features = F.dropout(new_features, p=self.drop_rate, training=self.training) | |
| return new_features | |
| class DenseBlock(nn.ModuleDict): | |
| _version = 2 | |
| def __init__(self, num_layers, num_input_features, bn_size, growth_rate, norm_layer=nn.ReLU, | |
| drop_rate=0., memory_efficient=False): | |
| super(DenseBlock, self).__init__() | |
| for i in range(num_layers): | |
| layer = DenseLayer( | |
| num_input_features + i * growth_rate, | |
| growth_rate=growth_rate, | |
| bn_size=bn_size, | |
| norm_layer=norm_layer, | |
| drop_rate=drop_rate, | |
| memory_efficient=memory_efficient, | |
| ) | |
| self.add_module('denselayer%d' % (i + 1), layer) | |
| def forward(self, init_features): | |
| features = [init_features] | |
| for name, layer in self.items(): | |
| new_features = layer(features) | |
| features.append(new_features) | |
| return torch.cat(features, 1) | |
| class DenseTransition(nn.Sequential): | |
| def __init__(self, num_input_features, num_output_features, norm_layer=nn.BatchNorm2d, aa_layer=None): | |
| super(DenseTransition, self).__init__() | |
| self.add_module('norm', norm_layer(num_input_features)) | |
| self.add_module('conv', nn.Conv2d( | |
| num_input_features, num_output_features, kernel_size=1, stride=1, bias=False)) | |
| if aa_layer is not None: | |
| self.add_module('pool', aa_layer(num_output_features, stride=2)) | |
| else: | |
| self.add_module('pool', nn.AvgPool2d(kernel_size=2, stride=2)) | |
| class DenseNet(nn.Module): | |
| r"""Densenet-BC model class, based on | |
| `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ | |
| Args: | |
| growth_rate (int) - how many filters to add each layer (`k` in paper) | |
| block_config (list of 4 ints) - how many layers in each pooling block | |
| bn_size (int) - multiplicative factor for number of bottle neck layers | |
| (i.e. bn_size * k features in the bottleneck layer) | |
| drop_rate (float) - dropout rate after each dense layer | |
| num_classes (int) - number of classification classes | |
| memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient, | |
| but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_ | |
| """ | |
| def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16), bn_size=4, stem_type='', | |
| num_classes=1000, in_chans=3, global_pool='avg', | |
| norm_layer=BatchNormAct2d, aa_layer=None, drop_rate=0, memory_efficient=False, | |
| aa_stem_only=True): | |
| self.num_classes = num_classes | |
| self.drop_rate = drop_rate | |
| super(DenseNet, self).__init__() | |
| # Stem | |
| deep_stem = 'deep' in stem_type # 3x3 deep stem | |
| num_init_features = growth_rate * 2 | |
| if aa_layer is None: | |
| stem_pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
| else: | |
| stem_pool = nn.Sequential(*[ | |
| nn.MaxPool2d(kernel_size=3, stride=1, padding=1), | |
| aa_layer(channels=num_init_features, stride=2)]) | |
| if deep_stem: | |
| stem_chs_1 = stem_chs_2 = growth_rate | |
| if 'tiered' in stem_type: | |
| stem_chs_1 = 3 * (growth_rate // 4) | |
| stem_chs_2 = num_init_features if 'narrow' in stem_type else 6 * (growth_rate // 4) | |
| self.features = nn.Sequential(OrderedDict([ | |
| ('conv0', nn.Conv2d(in_chans, stem_chs_1, 3, stride=2, padding=1, bias=False)), | |
| ('norm0', norm_layer(stem_chs_1)), | |
| ('conv1', nn.Conv2d(stem_chs_1, stem_chs_2, 3, stride=1, padding=1, bias=False)), | |
| ('norm1', norm_layer(stem_chs_2)), | |
| ('conv2', nn.Conv2d(stem_chs_2, num_init_features, 3, stride=1, padding=1, bias=False)), | |
| ('norm2', norm_layer(num_init_features)), | |
| ('pool0', stem_pool), | |
| ])) | |
| else: | |
| self.features = nn.Sequential(OrderedDict([ | |
| ('conv0', nn.Conv2d(in_chans, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)), | |
| ('norm0', norm_layer(num_init_features)), | |
| ('pool0', stem_pool), | |
| ])) | |
| self.feature_info = [ | |
| dict(num_chs=num_init_features, reduction=2, module=f'features.norm{2 if deep_stem else 0}')] | |
| current_stride = 4 | |
| # DenseBlocks | |
| num_features = num_init_features | |
| for i, num_layers in enumerate(block_config): | |
| block = DenseBlock( | |
| num_layers=num_layers, | |
| num_input_features=num_features, | |
| bn_size=bn_size, | |
| growth_rate=growth_rate, | |
| norm_layer=norm_layer, | |
| drop_rate=drop_rate, | |
| memory_efficient=memory_efficient | |
| ) | |
| module_name = f'denseblock{(i + 1)}' | |
| self.features.add_module(module_name, block) | |
| num_features = num_features + num_layers * growth_rate | |
| transition_aa_layer = None if aa_stem_only else aa_layer | |
| if i != len(block_config) - 1: | |
| self.feature_info += [ | |
| dict(num_chs=num_features, reduction=current_stride, module='features.' + module_name)] | |
| current_stride *= 2 | |
| trans = DenseTransition( | |
| num_input_features=num_features, num_output_features=num_features // 2, | |
| norm_layer=norm_layer, aa_layer=transition_aa_layer) | |
| self.features.add_module(f'transition{i + 1}', trans) | |
| num_features = num_features // 2 | |
| # Final batch norm | |
| self.features.add_module('norm5', norm_layer(num_features)) | |
| self.feature_info += [dict(num_chs=num_features, reduction=current_stride, module='features.norm5')] | |
| self.num_features = num_features | |
| # Linear layer | |
| self.global_pool, self.classifier = create_classifier( | |
| self.num_features, self.num_classes, pool_type=global_pool) | |
| # Official init from torch repo. | |
| for m in self.modules(): | |
| if isinstance(m, nn.Conv2d): | |
| nn.init.kaiming_normal_(m.weight) | |
| elif isinstance(m, nn.BatchNorm2d): | |
| nn.init.constant_(m.weight, 1) | |
| nn.init.constant_(m.bias, 0) | |
| elif isinstance(m, nn.Linear): | |
| nn.init.constant_(m.bias, 0) | |
| def get_classifier(self): | |
| return self.classifier | |
| def reset_classifier(self, num_classes, global_pool='avg'): | |
| self.num_classes = num_classes | |
| self.global_pool, self.classifier = create_classifier( | |
| self.num_features, self.num_classes, pool_type=global_pool) | |
| def forward_features(self, x): | |
| return self.features(x) | |
| def forward(self, x): | |
| x = self.forward_features(x) | |
| x = self.global_pool(x) | |
| # both classifier and block drop? | |
| # if self.drop_rate > 0.: | |
| # x = F.dropout(x, p=self.drop_rate, training=self.training) | |
| x = self.classifier(x) | |
| return x | |
| def _filter_torchvision_pretrained(state_dict): | |
| pattern = re.compile( | |
| r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$') | |
| for key in list(state_dict.keys()): | |
| res = pattern.match(key) | |
| if res: | |
| new_key = res.group(1) + res.group(2) | |
| state_dict[new_key] = state_dict[key] | |
| del state_dict[key] | |
| return state_dict | |
| def _create_densenet(variant, growth_rate, block_config, pretrained, **kwargs): | |
| kwargs['growth_rate'] = growth_rate | |
| kwargs['block_config'] = block_config | |
| return build_model_with_cfg( | |
| DenseNet, variant, pretrained, | |
| default_cfg=default_cfgs[variant], | |
| feature_cfg=dict(flatten_sequential=True), pretrained_filter_fn=_filter_torchvision_pretrained, | |
| **kwargs) | |
| def densenet121(pretrained=False, **kwargs): | |
| r"""Densenet-121 model from | |
| `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>` | |
| """ | |
| model = _create_densenet( | |
| 'densenet121', growth_rate=32, block_config=(6, 12, 24, 16), pretrained=pretrained, **kwargs) | |
| return model | |
| def densenetblur121d(pretrained=False, **kwargs): | |
| r"""Densenet-121 model from | |
| `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>` | |
| """ | |
| model = _create_densenet( | |
| 'densenetblur121d', growth_rate=32, block_config=(6, 12, 24, 16), pretrained=pretrained, stem_type='deep', | |
| aa_layer=BlurPool2d, **kwargs) | |
| return model | |
| def densenet121d(pretrained=False, **kwargs): | |
| r"""Densenet-121 model from | |
| `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>` | |
| """ | |
| model = _create_densenet( | |
| 'densenet121d', growth_rate=32, block_config=(6, 12, 24, 16), stem_type='deep', | |
| pretrained=pretrained, **kwargs) | |
| return model | |
| def densenet169(pretrained=False, **kwargs): | |
| r"""Densenet-169 model from | |
| `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>` | |
| """ | |
| model = _create_densenet( | |
| 'densenet169', growth_rate=32, block_config=(6, 12, 32, 32), pretrained=pretrained, **kwargs) | |
| return model | |
| def densenet201(pretrained=False, **kwargs): | |
| r"""Densenet-201 model from | |
| `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>` | |
| """ | |
| model = _create_densenet( | |
| 'densenet201', growth_rate=32, block_config=(6, 12, 48, 32), pretrained=pretrained, **kwargs) | |
| return model | |
| def densenet161(pretrained=False, **kwargs): | |
| r"""Densenet-161 model from | |
| `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>` | |
| """ | |
| model = _create_densenet( | |
| 'densenet161', growth_rate=48, block_config=(6, 12, 36, 24), pretrained=pretrained, **kwargs) | |
| return model | |
| def densenet264(pretrained=False, **kwargs): | |
| r"""Densenet-264 model from | |
| `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>` | |
| """ | |
| model = _create_densenet( | |
| 'densenet264', growth_rate=48, block_config=(6, 12, 64, 48), pretrained=pretrained, **kwargs) | |
| return model | |
| def densenet264d_iabn(pretrained=False, **kwargs): | |
| r"""Densenet-264 model with deep stem and Inplace-ABN | |
| """ | |
| def norm_act_fn(num_features, **kwargs): | |
| return create_norm_act('iabn', num_features, **kwargs) | |
| model = _create_densenet( | |
| 'densenet264d_iabn', growth_rate=48, block_config=(6, 12, 64, 48), stem_type='deep', | |
| norm_layer=norm_act_fn, pretrained=pretrained, **kwargs) | |
| return model | |
| def tv_densenet121(pretrained=False, **kwargs): | |
| r"""Densenet-121 model with original Torchvision weights, from | |
| `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>` | |
| """ | |
| model = _create_densenet( | |
| 'tv_densenet121', growth_rate=32, block_config=(6, 12, 24, 16), pretrained=pretrained, **kwargs) | |
| return model | |