Rework wiki search by directly using Wikimedia API and RetrievalQA chain
Browse files- agent.py +41 -20
- requirements.txt +3 -0
- tools.py +149 -15
agent.py
CHANGED
|
@@ -1,10 +1,12 @@
|
|
| 1 |
-
from typing import Annotated,
|
| 2 |
|
| 3 |
from dotenv import find_dotenv, load_dotenv
|
| 4 |
from langchain.chat_models import init_chat_model
|
| 5 |
-
from langchain_core.messages import
|
|
|
|
| 6 |
from langgraph.graph.message import add_messages
|
| 7 |
-
from langgraph.
|
|
|
|
| 8 |
|
| 9 |
from tools import (add, ask_about_image, divide, get_current_time_and_date,
|
| 10 |
get_sum, get_weather_info, get_youtube_transcript,
|
|
@@ -14,26 +16,27 @@ from tools import (add, ask_about_image, divide, get_current_time_and_date,
|
|
| 14 |
|
| 15 |
|
| 16 |
class AgentState(TypedDict):
|
| 17 |
-
|
| 18 |
-
messages: Annotated[list[AnyMessage], add_messages]
|
| 19 |
|
| 20 |
|
| 21 |
class BasicAgent:
|
| 22 |
def __init__(self):
|
| 23 |
load_dotenv(find_dotenv())
|
| 24 |
-
|
| 25 |
system_prompt = (
|
| 26 |
-
"You are a general AI assistant
|
| 27 |
-
"
|
| 28 |
-
"
|
| 29 |
-
"
|
| 30 |
-
"
|
| 31 |
-
"
|
| 32 |
-
"
|
| 33 |
-
"
|
| 34 |
-
"
|
| 35 |
-
"
|
| 36 |
-
"the
|
|
|
|
|
|
|
| 37 |
)
|
| 38 |
tools = [
|
| 39 |
get_weather_info,
|
|
@@ -52,14 +55,32 @@ class BasicAgent:
|
|
| 52 |
get_youtube_video_info,
|
| 53 |
get_youtube_transcript,
|
| 54 |
]
|
|
|
|
| 55 |
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
print("BasicAgent initialized.")
|
| 58 |
|
| 59 |
def __call__(self, question: str) -> str:
|
| 60 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
| 61 |
messages = [HumanMessage(content=question)]
|
| 62 |
-
|
| 63 |
-
response_string =
|
| 64 |
print(f"Agent's response: {response_string}")
|
| 65 |
return response_string
|
|
|
|
| 1 |
+
from typing import Annotated, TypedDict
|
| 2 |
|
| 3 |
from dotenv import find_dotenv, load_dotenv
|
| 4 |
from langchain.chat_models import init_chat_model
|
| 5 |
+
from langchain_core.messages import HumanMessage, SystemMessage
|
| 6 |
+
from langfuse.callback import CallbackHandler
|
| 7 |
from langgraph.graph.message import add_messages
|
| 8 |
+
from langgraph.graph import START, StateGraph
|
| 9 |
+
from langgraph.prebuilt import ToolNode, tools_condition
|
| 10 |
|
| 11 |
from tools import (add, ask_about_image, divide, get_current_time_and_date,
|
| 12 |
get_sum, get_weather_info, get_youtube_transcript,
|
|
|
|
| 16 |
|
| 17 |
|
| 18 |
class AgentState(TypedDict):
|
| 19 |
+
messages: Annotated[list, add_messages]
|
|
|
|
| 20 |
|
| 21 |
|
| 22 |
class BasicAgent:
|
| 23 |
def __init__(self):
|
| 24 |
load_dotenv(find_dotenv())
|
| 25 |
+
llm = init_chat_model("groq:meta-llama/llama-4-scout-17b-16e-instruct")
|
| 26 |
system_prompt = (
|
| 27 |
+
"You are a powerful general AI assistant designed to answer challenging questions using reasoning and tools.\n"
|
| 28 |
+
"Each question has a correct answer, and you are expected to find it.\n"
|
| 29 |
+
"Use all available tools — including calculator, search, or other domain-specific utilities — to verify your work or retrieve information.\n"
|
| 30 |
+
"If a question requires computation or external data, you must call the appropriate tool.\n"
|
| 31 |
+
"Think through the problem step by step, then clearly state your final answer using this format:\n"
|
| 32 |
+
"FINAL ANSWER: [YOUR FINAL ANSWER]\n\n"
|
| 33 |
+
"Your final answer must follow these rules:\n"
|
| 34 |
+
"- If the answer is a number, do not use commas or units (unless explicitly requested).\n"
|
| 35 |
+
"- If the answer is a string, use as few words as possible and do not use articles, abbreviations, or numeric digits.\n"
|
| 36 |
+
"- If the answer is a comma-separated list, follow the above rules for each element.\n"
|
| 37 |
+
"- If the answer is a string and unless you are asked to provide a list, capitalize the first letter of the final answer.\n"
|
| 38 |
+
"Do not say “I cannot answer” or “no answer found”. Success is mandatory. "
|
| 39 |
+
"You have access to everything you need to solve this."
|
| 40 |
)
|
| 41 |
tools = [
|
| 42 |
get_weather_info,
|
|
|
|
| 55 |
get_youtube_video_info,
|
| 56 |
get_youtube_transcript,
|
| 57 |
]
|
| 58 |
+
llm_with_tools = llm.bind_tools(tools)
|
| 59 |
|
| 60 |
+
def assistant(state: AgentState):
|
| 61 |
+
sys_msg = SystemMessage(content=system_prompt)
|
| 62 |
+
return {"messages": llm_with_tools.invoke([sys_msg] + state["messages"])}
|
| 63 |
+
|
| 64 |
+
graph_builder = StateGraph(AgentState)
|
| 65 |
+
|
| 66 |
+
graph_builder.add_node("assistant", assistant)
|
| 67 |
+
graph_builder.add_node("tools", ToolNode(tools))
|
| 68 |
+
|
| 69 |
+
graph_builder.add_edge(START, "assistant")
|
| 70 |
+
graph_builder.add_conditional_edges(
|
| 71 |
+
"assistant",
|
| 72 |
+
tools_condition,
|
| 73 |
+
)
|
| 74 |
+
graph_builder.add_edge("tools", "assistant")
|
| 75 |
+
|
| 76 |
+
self.agent = graph_builder.compile()
|
| 77 |
+
self.langfuse_handler = CallbackHandler()
|
| 78 |
print("BasicAgent initialized.")
|
| 79 |
|
| 80 |
def __call__(self, question: str) -> str:
|
| 81 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
| 82 |
messages = [HumanMessage(content=question)]
|
| 83 |
+
state = self.agent.invoke({"messages": messages}, config={"callbacks": [self.langfuse_handler]})
|
| 84 |
+
response_string = state["messages"][-1].content
|
| 85 |
print(f"Agent's response: {response_string}")
|
| 86 |
return response_string
|
requirements.txt
CHANGED
|
@@ -1,7 +1,9 @@
|
|
| 1 |
beautifulsoup4==4.13.4
|
| 2 |
datasets==3.5.1
|
| 3 |
duckduckgo-search==8.0.1
|
|
|
|
| 4 |
gradio==5.29.0
|
|
|
|
| 5 |
huggingface-hub==0.30.2
|
| 6 |
langchain==0.3.25
|
| 7 |
langchain-community==0.3.23
|
|
@@ -9,6 +11,7 @@ langchain-core==0.3.58
|
|
| 9 |
langchain_groq==0.3.2
|
| 10 |
langchain-huggingface==0.1.2
|
| 11 |
langchain-openai==0.3.16
|
|
|
|
| 12 |
langgraph==0.4.1
|
| 13 |
numpy==2.2.5
|
| 14 |
openai-whisper==20240930
|
|
|
|
| 1 |
beautifulsoup4==4.13.4
|
| 2 |
datasets==3.5.1
|
| 3 |
duckduckgo-search==8.0.1
|
| 4 |
+
faiss-cpu==1.11.0
|
| 5 |
gradio==5.29.0
|
| 6 |
+
hf_xet==1.1.2
|
| 7 |
huggingface-hub==0.30.2
|
| 8 |
langchain==0.3.25
|
| 9 |
langchain-community==0.3.23
|
|
|
|
| 11 |
langchain_groq==0.3.2
|
| 12 |
langchain-huggingface==0.1.2
|
| 13 |
langchain-openai==0.3.16
|
| 14 |
+
langfuse==2.60.5
|
| 15 |
langgraph==0.4.1
|
| 16 |
numpy==2.2.5
|
| 17 |
openai-whisper==20240930
|
tools.py
CHANGED
|
@@ -1,12 +1,15 @@
|
|
| 1 |
import base64
|
| 2 |
import os
|
| 3 |
-
from
|
| 4 |
|
| 5 |
import pandas as pd
|
| 6 |
import requests
|
| 7 |
import whisper
|
| 8 |
-
|
|
|
|
|
|
|
| 9 |
from dotenv import find_dotenv, load_dotenv
|
|
|
|
| 10 |
from langchain.chat_models import init_chat_model
|
| 11 |
from langchain_community.document_loaders import (
|
| 12 |
UnstructuredPDFLoader, UnstructuredPowerPointLoader,
|
|
@@ -14,13 +17,26 @@ from langchain_community.document_loaders import (
|
|
| 14 |
from langchain_community.tools import DuckDuckGoSearchRun
|
| 15 |
from langchain_core.prompts import ChatPromptTemplate
|
| 16 |
from langchain_core.tools import tool
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
from youtube_transcript_api import YouTubeTranscriptApi
|
| 18 |
from yt_dlp import YoutubeDL
|
| 19 |
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
@tool
|
| 22 |
def get_weather_info(location: str) -> str:
|
| 23 |
-
"""Fetches
|
| 24 |
|
| 25 |
Usage:
|
| 26 |
```
|
|
@@ -127,20 +143,127 @@ def reverse_text(text: str) -> str:
|
|
| 127 |
return text[::-1]
|
| 128 |
|
| 129 |
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
|
| 134 |
Args:
|
| 135 |
query (str): The search query.
|
|
|
|
| 136 |
"""
|
| 137 |
-
|
| 138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
return "No results found."
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
|
| 145 |
|
| 146 |
@tool
|
|
@@ -243,7 +366,7 @@ def ask_about_image(image_path: str, question: str) -> str:
|
|
| 243 |
question (str): Your question about the image, as a natural language sentence. Provide as much context as possible.
|
| 244 |
"""
|
| 245 |
load_dotenv(find_dotenv())
|
| 246 |
-
llm = init_chat_model("groq:meta-llama/llama-4-
|
| 247 |
prompt = ChatPromptTemplate(
|
| 248 |
[
|
| 249 |
{
|
|
@@ -256,16 +379,26 @@ def ask_about_image(image_path: str, question: str) -> str:
|
|
| 256 |
{
|
| 257 |
"type": "image_url",
|
| 258 |
"image_url": {
|
| 259 |
-
"url": "data:image/
|
| 260 |
},
|
| 261 |
},
|
| 262 |
],
|
| 263 |
}
|
| 264 |
]
|
| 265 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
chain = prompt | llm
|
| 267 |
response = chain.invoke(
|
| 268 |
-
{
|
|
|
|
|
|
|
|
|
|
|
|
|
| 269 |
)
|
| 270 |
return response.text()
|
| 271 |
|
|
@@ -322,6 +455,7 @@ def inspect_file_as_text(file_path: str) -> str:
|
|
| 322 |
Args:
|
| 323 |
file_path (str): The path to the file you want to read as text. If it is an image, use `vision_qa` tool.
|
| 324 |
"""
|
|
|
|
| 325 |
try:
|
| 326 |
suffix = os.path.splitext(file_path)[-1]
|
| 327 |
if suffix in [".jpg", ".jpeg", ".png", ".gif", ".bmp", ".tiff"]:
|
|
|
|
| 1 |
import base64
|
| 2 |
import os
|
| 3 |
+
from typing import Optional
|
| 4 |
|
| 5 |
import pandas as pd
|
| 6 |
import requests
|
| 7 |
import whisper
|
| 8 |
+
|
| 9 |
+
from bs4 import BeautifulSoup
|
| 10 |
+
from datetime import datetime
|
| 11 |
from dotenv import find_dotenv, load_dotenv
|
| 12 |
+
from langchain.chains import RetrievalQA
|
| 13 |
from langchain.chat_models import init_chat_model
|
| 14 |
from langchain_community.document_loaders import (
|
| 15 |
UnstructuredPDFLoader, UnstructuredPowerPointLoader,
|
|
|
|
| 17 |
from langchain_community.tools import DuckDuckGoSearchRun
|
| 18 |
from langchain_core.prompts import ChatPromptTemplate
|
| 19 |
from langchain_core.tools import tool
|
| 20 |
+
from langchain.schema import Document
|
| 21 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 22 |
+
from langchain_community.vectorstores import FAISS
|
| 23 |
+
from langchain_huggingface.embeddings import HuggingFaceEmbeddings
|
| 24 |
+
from markdownify import markdownify as md
|
| 25 |
from youtube_transcript_api import YouTubeTranscriptApi
|
| 26 |
from yt_dlp import YoutubeDL
|
| 27 |
|
| 28 |
|
| 29 |
+
UNWANTED_SECTIONS = {
|
| 30 |
+
"references",
|
| 31 |
+
"external links",
|
| 32 |
+
"further reading",
|
| 33 |
+
"see also",
|
| 34 |
+
"notes",
|
| 35 |
+
}
|
| 36 |
+
|
| 37 |
@tool
|
| 38 |
def get_weather_info(location: str) -> str:
|
| 39 |
+
"""Fetches weather information for a given location.
|
| 40 |
|
| 41 |
Usage:
|
| 42 |
```
|
|
|
|
| 143 |
return text[::-1]
|
| 144 |
|
| 145 |
|
| 146 |
+
def build_retriever(text: str):
|
| 147 |
+
"""Builds a retriever from the given text.
|
| 148 |
+
|
| 149 |
+
Args:
|
| 150 |
+
text (str): The text to be used for retrieval.
|
| 151 |
+
"""
|
| 152 |
+
splitter = RecursiveCharacterTextSplitter(
|
| 153 |
+
separators=["\n### ", "\n## ", "\n# "],
|
| 154 |
+
chunk_size=1000,
|
| 155 |
+
chunk_overlap=200,
|
| 156 |
+
)
|
| 157 |
+
chunks = splitter.split_text(text)
|
| 158 |
+
docs = [
|
| 159 |
+
Document(page_content=chunk)
|
| 160 |
+
for chunk in chunks
|
| 161 |
+
]
|
| 162 |
+
hf_embed = HuggingFaceEmbeddings(
|
| 163 |
+
model_name="sentence-transformers/all-MiniLM-L6-v2"
|
| 164 |
+
)
|
| 165 |
+
index = FAISS.from_documents(docs, hf_embed)
|
| 166 |
+
return index.as_retriever(search_kwargs={"k": 3})
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
def get_retrieval_qa(text: str):
|
| 170 |
+
"""Creates a RetrievalQA instance for the given text.
|
| 171 |
+
Args:
|
| 172 |
+
text (str): The text to be used for retrieval.
|
| 173 |
+
"""
|
| 174 |
+
retriever = build_retriever(text)
|
| 175 |
+
llm = init_chat_model("groq:meta-llama/llama-4-scout-17b-16e-instruct")
|
| 176 |
+
return RetrievalQA.from_chain_type(
|
| 177 |
+
llm=llm,
|
| 178 |
+
chain_type="stuff",
|
| 179 |
+
retriever=retriever,
|
| 180 |
+
return_source_documents=True,
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
def clean_html(html: str) -> str:
|
| 185 |
+
soup = BeautifulSoup(html, "html.parser")
|
| 186 |
+
|
| 187 |
+
# 1. Remove <script> & <style>
|
| 188 |
+
for tag in soup(["script", "style"]):
|
| 189 |
+
tag.decompose()
|
| 190 |
+
|
| 191 |
+
# 2. Drop whole <section> blocks whose first heading is unwanted
|
| 192 |
+
for sec in soup.find_all("section"):
|
| 193 |
+
h = sec.find(["h1","h2","h3","h4","h5","h6"])
|
| 194 |
+
if h and any(h.get_text(strip=True).lower().startswith(u) for u in UNWANTED_SECTIONS):
|
| 195 |
+
sec.decompose()
|
| 196 |
+
|
| 197 |
+
# 3. Additional filtering by CSS selector
|
| 198 |
+
for selector in [".toc", ".navbox", ".vertical-navbox", ".hatnote", ".reflist", ".mw-references-wrap"]:
|
| 199 |
+
for el in soup.select(selector):
|
| 200 |
+
el.decompose()
|
| 201 |
+
|
| 202 |
+
# 4. Isolate the main content container if present
|
| 203 |
+
main = soup.find("div", class_="mw-parser-output")
|
| 204 |
+
return str(main or soup)
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
def get_wikipedia_article(query: str, lang: str = "en") -> str:
|
| 208 |
+
"""Fetches a Wikipedia article for a given query and returns its content in Markdown format.
|
| 209 |
|
| 210 |
Args:
|
| 211 |
query (str): The search query.
|
| 212 |
+
lang (str): The language code for the search. Default is "en".
|
| 213 |
"""
|
| 214 |
+
headers = {
|
| 215 |
+
'User-Agent': 'MyLLMAgent (llm_agent@example.com)'
|
| 216 |
+
}
|
| 217 |
+
|
| 218 |
+
# Step 1: Search
|
| 219 |
+
search_url = f"https://api.wikimedia.org/core/v1/wikipedia/{lang}/search/page"
|
| 220 |
+
search_params = {'q': query, 'limit': 1}
|
| 221 |
+
search_response = requests.get(search_url, headers=headers, params=search_params, timeout=15)
|
| 222 |
+
|
| 223 |
+
if search_response.status_code != 200:
|
| 224 |
+
return f"Search error: {search_response.status_code}"
|
| 225 |
+
|
| 226 |
+
results = search_response.json().get("pages", [])
|
| 227 |
+
if not results:
|
| 228 |
return "No results found."
|
| 229 |
+
|
| 230 |
+
page = results[0]
|
| 231 |
+
page_key = page["key"]
|
| 232 |
+
|
| 233 |
+
# Step 2: Get the wiki page, only keep relevant content and convert to Markdown
|
| 234 |
+
content_url = f"https://api.wikimedia.org/core/v1/wikipedia/{lang}/page/{page_key}/html"
|
| 235 |
+
content_response = requests.get(content_url, timeout=15)
|
| 236 |
+
|
| 237 |
+
if content_response.status_code != 200:
|
| 238 |
+
return f"Content fetch error: {content_response.status_code}"
|
| 239 |
+
|
| 240 |
+
html = clean_html(content_response.text)
|
| 241 |
+
|
| 242 |
+
markdown = md(
|
| 243 |
+
html,
|
| 244 |
+
heading_style="ATX",
|
| 245 |
+
bullets="*+-",
|
| 246 |
+
table_infer_header=True,
|
| 247 |
+
strip=['a', 'span']
|
| 248 |
+
)
|
| 249 |
+
return markdown
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
@tool
|
| 253 |
+
def wiki_search(query: str, question: str, lang: str="en") -> str:
|
| 254 |
+
"""Searches Wikipedia for a specific article and answers a question based on its content.
|
| 255 |
+
|
| 256 |
+
The function retrieves a Wikipedia article based on the provided query, converts it to Markdown,
|
| 257 |
+
and uses a retrieval-based QA system to answer the specified question.
|
| 258 |
+
|
| 259 |
+
Args:
|
| 260 |
+
query (str): A concise topic name with optional keywords, ideally matching the relevant Wikipedia page title.
|
| 261 |
+
question (str): The question to answer using the article.
|
| 262 |
+
lang (str): Language code for the Wikipedia edition to search (default: "en").
|
| 263 |
+
"""
|
| 264 |
+
markdown = get_wikipedia_article(query, lang)
|
| 265 |
+
qa = get_retrieval_qa(markdown)
|
| 266 |
+
return qa.invoke(question)
|
| 267 |
|
| 268 |
|
| 269 |
@tool
|
|
|
|
| 366 |
question (str): Your question about the image, as a natural language sentence. Provide as much context as possible.
|
| 367 |
"""
|
| 368 |
load_dotenv(find_dotenv())
|
| 369 |
+
llm = init_chat_model("groq:meta-llama/llama-4-maverick-17b-128e-instruct")
|
| 370 |
prompt = ChatPromptTemplate(
|
| 371 |
[
|
| 372 |
{
|
|
|
|
| 379 |
{
|
| 380 |
"type": "image_url",
|
| 381 |
"image_url": {
|
| 382 |
+
"url": "data:image/{image_format};base64,{base64_image}",
|
| 383 |
},
|
| 384 |
},
|
| 385 |
],
|
| 386 |
}
|
| 387 |
]
|
| 388 |
)
|
| 389 |
+
file_suffix = os.path.splitext(image_path)[-1]
|
| 390 |
+
if file_suffix == ".png":
|
| 391 |
+
image_format = "png"
|
| 392 |
+
else:
|
| 393 |
+
# We could handle other formats explicitly, but for simplicity we assume JPEG
|
| 394 |
+
image_format = "jpeg"
|
| 395 |
chain = prompt | llm
|
| 396 |
response = chain.invoke(
|
| 397 |
+
{
|
| 398 |
+
"question": question,
|
| 399 |
+
"base64_image": encode_image(image_path),
|
| 400 |
+
"image_format": image_format,
|
| 401 |
+
}
|
| 402 |
)
|
| 403 |
return response.text()
|
| 404 |
|
|
|
|
| 455 |
Args:
|
| 456 |
file_path (str): The path to the file you want to read as text. If it is an image, use `vision_qa` tool.
|
| 457 |
"""
|
| 458 |
+
# TODO we could also pass the file content to a retrieval chain
|
| 459 |
try:
|
| 460 |
suffix = os.path.splitext(file_path)[-1]
|
| 461 |
if suffix in [".jpg", ".jpeg", ".png", ".gif", ".bmp", ".tiff"]:
|