Implement basic agent and tools to solve GAIA questions
Browse files- .env.example +15 -0
- .gitignore +174 -0
- README.md +1 -1
- agent.py +65 -0
- app.py +153 -65
- prompt.json +5 -0
- requirements.txt +24 -2
- tools.py +359 -0
.env.example
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# example of file for storing private and user specific environment variables, like keys or system paths
|
| 2 |
+
# rename it to ".env" (excluded from version control by default)
|
| 3 |
+
|
| 4 |
+
# example, uncomment and adapt for your needs!
|
| 5 |
+
# MY_VAR="/home/user/my/system/path"
|
| 6 |
+
|
| 7 |
+
# OPENWEATHERMAP_API_KEY=YOUR_OPENWEATHERMAP_API_KEY
|
| 8 |
+
# OPENAI_API_KEY=YOUR_OPENAI_API_KEY
|
| 9 |
+
# FUSE_PUBLIC_KEY=YOUR_FUSE_PUBLIC_KEY
|
| 10 |
+
# LANGFUSE_SECRET_KEY=YOUR_LANGFUSE_SECRET_KEY
|
| 11 |
+
# OTEL_EXPORTER_OTLP_ENDPOINT=https://cloud.langfuse.com/api/public/otel
|
| 12 |
+
# LANGFUSE_HOST=https://cloud.langfuse.com
|
| 13 |
+
# HUGGINGFACE_API_KEY=YOUR_HUGGINGFACE_API_KEY
|
| 14 |
+
# ANTHROPIC_API_KEY=YOUR_ANTHROPIC_API_KEY
|
| 15 |
+
# GROQ_API_KEY=YOUR_GROQ_API_KEY
|
.gitignore
ADDED
|
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Byte-compiled / optimized / DLL files
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*$py.class
|
| 5 |
+
|
| 6 |
+
# C extensions
|
| 7 |
+
*.so
|
| 8 |
+
|
| 9 |
+
# Distribution / packaging
|
| 10 |
+
.Python
|
| 11 |
+
build/
|
| 12 |
+
develop-eggs/
|
| 13 |
+
dist/
|
| 14 |
+
downloads/
|
| 15 |
+
eggs/
|
| 16 |
+
.eggs/
|
| 17 |
+
lib/
|
| 18 |
+
lib64/
|
| 19 |
+
parts/
|
| 20 |
+
sdist/
|
| 21 |
+
var/
|
| 22 |
+
wheels/
|
| 23 |
+
share/python-wheels/
|
| 24 |
+
*.egg-info/
|
| 25 |
+
.installed.cfg
|
| 26 |
+
*.egg
|
| 27 |
+
MANIFEST
|
| 28 |
+
|
| 29 |
+
# PyInstaller
|
| 30 |
+
# Usually these files are written by a python script from a template
|
| 31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
| 32 |
+
*.manifest
|
| 33 |
+
*.spec
|
| 34 |
+
|
| 35 |
+
# Installer logs
|
| 36 |
+
pip-log.txt
|
| 37 |
+
pip-delete-this-directory.txt
|
| 38 |
+
|
| 39 |
+
# Unit test / coverage reports
|
| 40 |
+
htmlcov/
|
| 41 |
+
.tox/
|
| 42 |
+
.nox/
|
| 43 |
+
.coverage
|
| 44 |
+
.coverage.*
|
| 45 |
+
.cache
|
| 46 |
+
nosetests.xml
|
| 47 |
+
coverage.xml
|
| 48 |
+
*.cover
|
| 49 |
+
*.py,cover
|
| 50 |
+
.hypothesis/
|
| 51 |
+
.pytest_cache/
|
| 52 |
+
cover/
|
| 53 |
+
|
| 54 |
+
# Translations
|
| 55 |
+
*.mo
|
| 56 |
+
*.pot
|
| 57 |
+
|
| 58 |
+
# Django stuff:
|
| 59 |
+
*.log
|
| 60 |
+
local_settings.py
|
| 61 |
+
db.sqlite3
|
| 62 |
+
db.sqlite3-journal
|
| 63 |
+
|
| 64 |
+
# Flask stuff:
|
| 65 |
+
instance/
|
| 66 |
+
.webassets-cache
|
| 67 |
+
|
| 68 |
+
# Scrapy stuff:
|
| 69 |
+
.scrapy
|
| 70 |
+
|
| 71 |
+
# Sphinx documentation
|
| 72 |
+
docs/_build/
|
| 73 |
+
|
| 74 |
+
# PyBuilder
|
| 75 |
+
.pybuilder/
|
| 76 |
+
target/
|
| 77 |
+
|
| 78 |
+
# Jupyter Notebook
|
| 79 |
+
.ipynb_checkpoints
|
| 80 |
+
|
| 81 |
+
# IPython
|
| 82 |
+
profile_default/
|
| 83 |
+
ipython_config.py
|
| 84 |
+
|
| 85 |
+
# pyenv
|
| 86 |
+
# For a library or package, you might want to ignore these files since the code is
|
| 87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
| 88 |
+
# .python-version
|
| 89 |
+
|
| 90 |
+
# pipenv
|
| 91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
| 92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
| 93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
| 94 |
+
# install all needed dependencies.
|
| 95 |
+
#Pipfile.lock
|
| 96 |
+
|
| 97 |
+
# UV
|
| 98 |
+
# Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
|
| 99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
| 100 |
+
# commonly ignored for libraries.
|
| 101 |
+
#uv.lock
|
| 102 |
+
|
| 103 |
+
# poetry
|
| 104 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
| 105 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
| 106 |
+
# commonly ignored for libraries.
|
| 107 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
| 108 |
+
#poetry.lock
|
| 109 |
+
|
| 110 |
+
# pdm
|
| 111 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
| 112 |
+
#pdm.lock
|
| 113 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
| 114 |
+
# in version control.
|
| 115 |
+
# https://pdm.fming.dev/latest/usage/project/#working-with-version-control
|
| 116 |
+
.pdm.toml
|
| 117 |
+
.pdm-python
|
| 118 |
+
.pdm-build/
|
| 119 |
+
|
| 120 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
| 121 |
+
__pypackages__/
|
| 122 |
+
|
| 123 |
+
# Celery stuff
|
| 124 |
+
celerybeat-schedule
|
| 125 |
+
celerybeat.pid
|
| 126 |
+
|
| 127 |
+
# SageMath parsed files
|
| 128 |
+
*.sage.py
|
| 129 |
+
|
| 130 |
+
# Environments
|
| 131 |
+
.env
|
| 132 |
+
.venv
|
| 133 |
+
env/
|
| 134 |
+
venv/
|
| 135 |
+
ENV/
|
| 136 |
+
env.bak/
|
| 137 |
+
venv.bak/
|
| 138 |
+
|
| 139 |
+
# Spyder project settings
|
| 140 |
+
.spyderproject
|
| 141 |
+
.spyproject
|
| 142 |
+
|
| 143 |
+
# Rope project settings
|
| 144 |
+
.ropeproject
|
| 145 |
+
|
| 146 |
+
# mkdocs documentation
|
| 147 |
+
/site
|
| 148 |
+
|
| 149 |
+
# mypy
|
| 150 |
+
.mypy_cache/
|
| 151 |
+
.dmypy.json
|
| 152 |
+
dmypy.json
|
| 153 |
+
|
| 154 |
+
# Pyre type checker
|
| 155 |
+
.pyre/
|
| 156 |
+
|
| 157 |
+
# pytype static type analyzer
|
| 158 |
+
.pytype/
|
| 159 |
+
|
| 160 |
+
# Cython debug symbols
|
| 161 |
+
cython_debug/
|
| 162 |
+
|
| 163 |
+
# PyCharm
|
| 164 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
| 165 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
| 166 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
| 167 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
| 168 |
+
#.idea/
|
| 169 |
+
|
| 170 |
+
# Ruff stuff:
|
| 171 |
+
.ruff_cache/
|
| 172 |
+
|
| 173 |
+
# PyPI configuration file
|
| 174 |
+
.pypirc
|
README.md
CHANGED
|
@@ -12,4 +12,4 @@ hf_oauth: true
|
|
| 12 |
hf_oauth_expiration_minutes: 480
|
| 13 |
---
|
| 14 |
|
| 15 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 12 |
hf_oauth_expiration_minutes: 480
|
| 13 |
---
|
| 14 |
|
| 15 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
agent.py
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Annotated, Optional, TypedDict
|
| 2 |
+
|
| 3 |
+
from dotenv import find_dotenv, load_dotenv
|
| 4 |
+
from langchain.chat_models import init_chat_model
|
| 5 |
+
from langchain_core.messages import AnyMessage, HumanMessage
|
| 6 |
+
from langgraph.graph.message import add_messages
|
| 7 |
+
from langgraph.prebuilt import create_react_agent
|
| 8 |
+
|
| 9 |
+
from tools import (add, ask_about_image, divide, get_current_time_and_date,
|
| 10 |
+
get_sum, get_weather_info, get_youtube_transcript,
|
| 11 |
+
get_youtube_video_info, inspect_file_as_text, multiply,
|
| 12 |
+
reverse_text, subtract, visit_website, web_search,
|
| 13 |
+
wiki_search)
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class AgentState(TypedDict):
|
| 17 |
+
input_file: Optional[str] # Contains file path
|
| 18 |
+
messages: Annotated[list[AnyMessage], add_messages]
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class BasicAgent:
|
| 22 |
+
def __init__(self):
|
| 23 |
+
load_dotenv(find_dotenv())
|
| 24 |
+
model = init_chat_model("groq:meta-llama/llama-4-scout-17b-16e-instruct")
|
| 25 |
+
system_prompt = (
|
| 26 |
+
"You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer "
|
| 27 |
+
"with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR "
|
| 28 |
+
"as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a "
|
| 29 |
+
"number, don't use comma to write your number neither use units such as $ or percent sign unless specified "
|
| 30 |
+
"otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), "
|
| 31 |
+
"and write the digits in plain text unless specified otherwise. If you are asked for a comma separated "
|
| 32 |
+
"list, apply the above rules depending of whether the element to be put in the list is a number or a string."
|
| 33 |
+
"Give it all you can: I know for a fact that you have access to all the relevant tools to solve it and find "
|
| 34 |
+
"the correct answer (the answer does exist). Failure or 'I cannot answer' or 'None found' will not be "
|
| 35 |
+
"tolerated, success will be rewarded. Run verification steps if that's needed, you must make sure you find "
|
| 36 |
+
"the correct answer! "
|
| 37 |
+
)
|
| 38 |
+
tools = [
|
| 39 |
+
get_weather_info,
|
| 40 |
+
add,
|
| 41 |
+
get_sum,
|
| 42 |
+
subtract,
|
| 43 |
+
multiply,
|
| 44 |
+
divide,
|
| 45 |
+
get_current_time_and_date,
|
| 46 |
+
wiki_search,
|
| 47 |
+
web_search,
|
| 48 |
+
visit_website,
|
| 49 |
+
inspect_file_as_text,
|
| 50 |
+
ask_about_image,
|
| 51 |
+
reverse_text,
|
| 52 |
+
get_youtube_video_info,
|
| 53 |
+
get_youtube_transcript,
|
| 54 |
+
]
|
| 55 |
+
|
| 56 |
+
self.agent = create_react_agent(model=model, tools=tools, prompt=system_prompt)
|
| 57 |
+
print("BasicAgent initialized.")
|
| 58 |
+
|
| 59 |
+
def __call__(self, question: str) -> str:
|
| 60 |
+
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
| 61 |
+
messages = [HumanMessage(content=question)]
|
| 62 |
+
response = self.agent.invoke({"messages": messages})
|
| 63 |
+
response_string = response["messages"][-1].content
|
| 64 |
+
print(f"Agent's response: {response_string}")
|
| 65 |
+
return response_string
|
app.py
CHANGED
|
@@ -1,34 +1,89 @@
|
|
|
|
|
|
|
|
| 1 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
-
import requests
|
| 4 |
-
import inspect
|
| 5 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
# (Keep Constants as is)
|
| 8 |
# --- Constants ---
|
| 9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
def
|
| 23 |
-
"""
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
| 28 |
-
|
|
|
|
| 29 |
|
| 30 |
if profile:
|
| 31 |
-
username= f"{profile.username}"
|
| 32 |
print(f"User logged in: {username}")
|
| 33 |
else:
|
| 34 |
print("User not logged in.")
|
|
@@ -38,62 +93,89 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
| 38 |
questions_url = f"{api_url}/questions"
|
| 39 |
submit_url = f"{api_url}/submit"
|
| 40 |
|
| 41 |
-
#
|
| 42 |
-
|
| 43 |
-
agent = BasicAgent()
|
| 44 |
-
except Exception as e:
|
| 45 |
-
print(f"Error instantiating agent: {e}")
|
| 46 |
-
return f"Error initializing agent: {e}", None
|
| 47 |
-
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
| 48 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
| 49 |
print(agent_code)
|
| 50 |
|
| 51 |
-
#
|
| 52 |
print(f"Fetching questions from: {questions_url}")
|
| 53 |
try:
|
| 54 |
response = requests.get(questions_url, timeout=15)
|
| 55 |
response.raise_for_status()
|
| 56 |
questions_data = response.json()
|
| 57 |
if not questions_data:
|
| 58 |
-
|
| 59 |
-
|
| 60 |
print(f"Fetched {len(questions_data)} questions.")
|
| 61 |
except requests.exceptions.RequestException as e:
|
| 62 |
print(f"Error fetching questions: {e}")
|
| 63 |
return f"Error fetching questions: {e}", None
|
| 64 |
except requests.exceptions.JSONDecodeError as e:
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
except Exception as e:
|
| 69 |
print(f"An unexpected error occurred fetching questions: {e}")
|
| 70 |
return f"An unexpected error occurred fetching questions: {e}", None
|
| 71 |
|
| 72 |
-
#
|
| 73 |
results_log = []
|
| 74 |
answers_payload = []
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
for item in questions_data:
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
|
| 90 |
if not answers_payload:
|
| 91 |
print("Agent did not produce any answers to submit.")
|
| 92 |
-
return
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
-
# 4. Prepare Submission
|
| 95 |
-
submission_data = {
|
| 96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
print(status_update)
|
| 98 |
|
| 99 |
# 5. Submit
|
|
@@ -106,7 +188,8 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
| 106 |
f"Submission Successful!\n"
|
| 107 |
f"User: {result_data.get('username')}\n"
|
| 108 |
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
| 109 |
-
f"({result_data.get('correct_count', '?')}/
|
|
|
|
| 110 |
f"Message: {result_data.get('message', 'No message received.')}"
|
| 111 |
)
|
| 112 |
print("Submission successful.")
|
|
@@ -154,7 +237,7 @@ with gr.Blocks() as demo:
|
|
| 154 |
---
|
| 155 |
**Disclaimers:**
|
| 156 |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
| 157 |
-
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a
|
| 158 |
"""
|
| 159 |
)
|
| 160 |
|
|
@@ -162,20 +245,19 @@ with gr.Blocks() as demo:
|
|
| 162 |
|
| 163 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
| 164 |
|
| 165 |
-
status_output = gr.Textbox(
|
|
|
|
|
|
|
| 166 |
# Removed max_rows=10 from DataFrame constructor
|
| 167 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
| 168 |
|
| 169 |
-
run_button.click(
|
| 170 |
-
fn=run_and_submit_all,
|
| 171 |
-
outputs=[status_output, results_table]
|
| 172 |
-
)
|
| 173 |
|
| 174 |
if __name__ == "__main__":
|
| 175 |
-
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
| 176 |
# Check for SPACE_HOST and SPACE_ID at startup for information
|
| 177 |
space_host_startup = os.getenv("SPACE_HOST")
|
| 178 |
-
space_id_startup = os.getenv("SPACE_ID")
|
| 179 |
|
| 180 |
if space_host_startup:
|
| 181 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
|
@@ -183,14 +265,20 @@ if __name__ == "__main__":
|
|
| 183 |
else:
|
| 184 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
| 185 |
|
| 186 |
-
if space_id_startup:
|
| 187 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
| 188 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
| 189 |
-
print(
|
|
|
|
|
|
|
|
|
|
| 190 |
else:
|
| 191 |
-
print(
|
|
|
|
|
|
|
|
|
|
| 192 |
|
| 193 |
-
print("-"*(60 + len(" App Starting ")) + "\n")
|
| 194 |
|
| 195 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
| 196 |
-
demo.launch(debug=True, share=False)
|
|
|
|
| 1 |
+
# import inspect
|
| 2 |
+
import json
|
| 3 |
import os
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
from typing import Dict
|
| 6 |
+
from zipfile import ZipFile
|
| 7 |
+
|
| 8 |
import gradio as gr
|
|
|
|
|
|
|
| 9 |
import pandas as pd
|
| 10 |
+
import requests
|
| 11 |
+
|
| 12 |
+
from agent import BasicAgent
|
| 13 |
|
| 14 |
# (Keep Constants as is)
|
| 15 |
# --- Constants ---
|
| 16 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 17 |
|
| 18 |
+
with open("prompt.json", mode="r") as f:
|
| 19 |
+
prompt_template = json.load(f)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def post_process_answer(answer: str) -> str:
|
| 23 |
+
"""Post-process the answer to extract the final answer."""
|
| 24 |
+
if "FINAL ANSWER:" in answer:
|
| 25 |
+
answer = answer.split("FINAL ANSWER:")[-1].strip()
|
| 26 |
+
return answer
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def solve_question(question: Dict[str, str]) -> Dict[str, str]:
|
| 30 |
+
"""Solve the question using the BasicAgent."""
|
| 31 |
+
agent = BasicAgent()
|
| 32 |
+
question_text = question.get("question")
|
| 33 |
+
task_id = question.get("task_id")
|
| 34 |
+
if not question_text:
|
| 35 |
+
raise ValueError("Question text is empty.")
|
| 36 |
+
augmented_question = prompt_template["user_prompt"] + question_text
|
| 37 |
+
if question.get("file_name"):
|
| 38 |
+
file_url = DEFAULT_API_URL + "/files"
|
| 39 |
+
response = requests.get(f"{file_url}/{question['file_name']}", timeout=15)
|
| 40 |
+
file_path = Path("files") / question["file_name"]
|
| 41 |
+
# Create files directory if it doesn't exist
|
| 42 |
+
file_path.parent.mkdir(parents=True, exist_ok=True)
|
| 43 |
+
with open(file_path, "wb") as f:
|
| 44 |
+
f.write(response.content)
|
| 45 |
+
if file_path.suffix == "zip":
|
| 46 |
+
# If the file is a zip, we need to extract the files and give the LLM the list of files
|
| 47 |
+
file_paths = []
|
| 48 |
+
with ZipFile(file_path, "r") as zip_ref:
|
| 49 |
+
for file_info in zip_ref.infolist():
|
| 50 |
+
# Read file content
|
| 51 |
+
file_data = zip_ref.read(file_info.filename)
|
| 52 |
+
extracted_file_path = file_path / file_info.filename
|
| 53 |
+
with open(extracted_file_path, "wb") as extracted_file:
|
| 54 |
+
extracted_file.write(file_data)
|
| 55 |
+
file_paths.append(str(extracted_file_path))
|
| 56 |
+
augmented_question += prompt_template["use_files_prompt"] + str(file_paths)
|
| 57 |
+
else:
|
| 58 |
+
augmented_question += prompt_template["use_file_prompt"] + str(file_path)
|
| 59 |
+
try:
|
| 60 |
+
agent_response = agent(augmented_question)
|
| 61 |
+
submitted_answer = post_process_answer(agent_response)
|
| 62 |
+
return {
|
| 63 |
+
"Task ID": task_id,
|
| 64 |
+
"Question": augmented_question,
|
| 65 |
+
"Submitted Answer": submitted_answer,
|
| 66 |
+
"Full Answer": agent_response,
|
| 67 |
+
}
|
| 68 |
+
except Exception as e:
|
| 69 |
+
print(f"Error running agent on task {task_id}: {e}")
|
| 70 |
+
return {
|
| 71 |
+
"Task ID": task_id,
|
| 72 |
+
"Question": augmented_question,
|
| 73 |
+
"Submitted Answer": f"AGENT ERROR: {e}",
|
| 74 |
+
"Full Answer": "",
|
| 75 |
+
}
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
| 79 |
+
"""Fetches all questions, runs the BasicAgent on them, submits all answers, and displays the
|
| 80 |
+
results."""
|
| 81 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
| 82 |
+
# Get the SPACE_ID for sending link to the code
|
| 83 |
+
space_id = os.getenv("SPACE_ID")
|
| 84 |
|
| 85 |
if profile:
|
| 86 |
+
username = f"{profile.username}"
|
| 87 |
print(f"User logged in: {username}")
|
| 88 |
else:
|
| 89 |
print("User not logged in.")
|
|
|
|
| 93 |
questions_url = f"{api_url}/questions"
|
| 94 |
submit_url = f"{api_url}/submit"
|
| 95 |
|
| 96 |
+
# In the case of an app running as a hugging Face space, this link points
|
| 97 |
+
# toward your codebase ( useful for others so please keep it public)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
| 99 |
print(agent_code)
|
| 100 |
|
| 101 |
+
# Fetch Questions
|
| 102 |
print(f"Fetching questions from: {questions_url}")
|
| 103 |
try:
|
| 104 |
response = requests.get(questions_url, timeout=15)
|
| 105 |
response.raise_for_status()
|
| 106 |
questions_data = response.json()
|
| 107 |
if not questions_data:
|
| 108 |
+
print("Fetched questions list is empty.")
|
| 109 |
+
return "Fetched questions list is empty or invalid format.", None
|
| 110 |
print(f"Fetched {len(questions_data)} questions.")
|
| 111 |
except requests.exceptions.RequestException as e:
|
| 112 |
print(f"Error fetching questions: {e}")
|
| 113 |
return f"Error fetching questions: {e}", None
|
| 114 |
except requests.exceptions.JSONDecodeError as e:
|
| 115 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
| 116 |
+
print(f"Response text: {response.text[:500]}")
|
| 117 |
+
return f"Error decoding server response for questions: {e}", None
|
| 118 |
except Exception as e:
|
| 119 |
print(f"An unexpected error occurred fetching questions: {e}")
|
| 120 |
return f"An unexpected error occurred fetching questions: {e}", None
|
| 121 |
|
| 122 |
+
# Run your Agent
|
| 123 |
results_log = []
|
| 124 |
answers_payload = []
|
| 125 |
+
|
| 126 |
+
results_file_path = Path("files/results_log.jsonl")
|
| 127 |
+
results_file_path.parent.mkdir(parents=True, exist_ok=True)
|
| 128 |
+
solved_task_ids = []
|
| 129 |
+
if results_file_path.exists():
|
| 130 |
+
print(f"Results file already exists: {results_file_path}")
|
| 131 |
+
with open(results_file_path, "r") as results_file:
|
| 132 |
+
for line in results_file:
|
| 133 |
+
result = json.loads(line)
|
| 134 |
+
results_log.append(result)
|
| 135 |
+
solved_task_ids.append(result["Task ID"])
|
| 136 |
+
filtered_questions_data = [
|
| 137 |
+
question
|
| 138 |
+
for question in questions_data
|
| 139 |
+
if question["task_id"] not in solved_task_ids
|
| 140 |
+
]
|
| 141 |
+
if solved_task_ids:
|
| 142 |
+
print(
|
| 143 |
+
f"Found {len(solved_task_ids)} solved questions. "
|
| 144 |
+
f"Running agent on remaining {len(filtered_questions_data)} questions."
|
| 145 |
+
)
|
| 146 |
+
else:
|
| 147 |
+
print(f"Running agent on {len(questions_data)} questions...")
|
| 148 |
for item in questions_data:
|
| 149 |
+
result = solve_question(item)
|
| 150 |
+
results_log.append(result)
|
| 151 |
+
with open(results_file_path, "w") as results_file:
|
| 152 |
+
for result in results_log:
|
| 153 |
+
results_file.write(json.dumps(result) + "\n")
|
| 154 |
+
for result in results_log:
|
| 155 |
+
answers_payload.append(
|
| 156 |
+
{
|
| 157 |
+
"task_id": result["Task ID"],
|
| 158 |
+
"submitted_answer": result["Submitted Answer"],
|
| 159 |
+
}
|
| 160 |
+
)
|
| 161 |
|
| 162 |
if not answers_payload:
|
| 163 |
print("Agent did not produce any answers to submit.")
|
| 164 |
+
return (
|
| 165 |
+
"Agent did not produce any answers to submit.",
|
| 166 |
+
pd.DataFrame(results_log),
|
| 167 |
+
)
|
| 168 |
|
| 169 |
+
# 4. Prepare Submission
|
| 170 |
+
submission_data = {
|
| 171 |
+
"username": username.strip(),
|
| 172 |
+
"agent_code": agent_code,
|
| 173 |
+
"answers": answers_payload,
|
| 174 |
+
}
|
| 175 |
+
status_update = (
|
| 176 |
+
f"Agent finished. Submitting {len(answers_payload)} "
|
| 177 |
+
f"answers for user '{username}'..."
|
| 178 |
+
)
|
| 179 |
print(status_update)
|
| 180 |
|
| 181 |
# 5. Submit
|
|
|
|
| 188 |
f"Submission Successful!\n"
|
| 189 |
f"User: {result_data.get('username')}\n"
|
| 190 |
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
| 191 |
+
f"({result_data.get('correct_count', '?')}/"
|
| 192 |
+
f"{result_data.get('total_attempted', '?')} correct)\n"
|
| 193 |
f"Message: {result_data.get('message', 'No message received.')}"
|
| 194 |
)
|
| 195 |
print("Submission successful.")
|
|
|
|
| 237 |
---
|
| 238 |
**Disclaimers:**
|
| 239 |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
| 240 |
+
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a separate action or even to answer the questions in async.
|
| 241 |
"""
|
| 242 |
)
|
| 243 |
|
|
|
|
| 245 |
|
| 246 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
| 247 |
|
| 248 |
+
status_output = gr.Textbox(
|
| 249 |
+
label="Run Status / Submission Result", lines=5, interactive=False
|
| 250 |
+
)
|
| 251 |
# Removed max_rows=10 from DataFrame constructor
|
| 252 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
| 253 |
|
| 254 |
+
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
|
|
|
|
|
|
|
|
|
|
| 255 |
|
| 256 |
if __name__ == "__main__":
|
| 257 |
+
print("\n" + "-" * 30 + " App Starting " + "-" * 30)
|
| 258 |
# Check for SPACE_HOST and SPACE_ID at startup for information
|
| 259 |
space_host_startup = os.getenv("SPACE_HOST")
|
| 260 |
+
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
| 261 |
|
| 262 |
if space_host_startup:
|
| 263 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
|
|
|
| 265 |
else:
|
| 266 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
| 267 |
|
| 268 |
+
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
| 269 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
| 270 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
| 271 |
+
print(
|
| 272 |
+
f" Repo Tree URL: https://huggingface.co/spaces/"
|
| 273 |
+
f"{space_id_startup}/tree/main"
|
| 274 |
+
)
|
| 275 |
else:
|
| 276 |
+
print(
|
| 277 |
+
"ℹ️ SPACE_ID environment variable not found (running locally?). "
|
| 278 |
+
"Repo URL cannot be determined."
|
| 279 |
+
)
|
| 280 |
|
| 281 |
+
print("-" * (60 + len(" App Starting ")) + "\n")
|
| 282 |
|
| 283 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
| 284 |
+
demo.launch(debug=True, share=False)
|
prompt.json
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"user_prompt": "Here is the task:\n",
|
| 3 |
+
"use_files_prompt": "\n\nTo solve the task above, you will have to use the appropriate tools to extract the relevant information from these attached files:\n",
|
| 4 |
+
"use_file_prompt": "\n\nTo solve the task above, you will have to use the appropriate tools to extract the relevant information from the attached file:\n"
|
| 5 |
+
}
|
requirements.txt
CHANGED
|
@@ -1,2 +1,24 @@
|
|
| 1 |
-
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
beautifulsoup4==4.13.4
|
| 2 |
+
datasets==3.5.1
|
| 3 |
+
duckduckgo-search==8.0.1
|
| 4 |
+
gradio==5.29.0
|
| 5 |
+
huggingface-hub==0.30.2
|
| 6 |
+
langchain==0.3.25
|
| 7 |
+
langchain-community==0.3.23
|
| 8 |
+
langchain-core==0.3.58
|
| 9 |
+
langchain_groq==0.3.2
|
| 10 |
+
langchain-huggingface==0.1.2
|
| 11 |
+
langchain-openai==0.3.16
|
| 12 |
+
langgraph==0.4.1
|
| 13 |
+
numpy==2.2.5
|
| 14 |
+
openai-whisper==20240930
|
| 15 |
+
openpyxl==3.1.5
|
| 16 |
+
pandas==2.2.3
|
| 17 |
+
pyrootutils~=1.0.4
|
| 18 |
+
python-dotenv~=1.1.0
|
| 19 |
+
requests==2.32.3
|
| 20 |
+
tabulate==0.9.0
|
| 21 |
+
unstructured[pdf,docx,pptx]==0.17.2
|
| 22 |
+
wikipedia~=1.4.0
|
| 23 |
+
youtube-transcript-api==1.0.3
|
| 24 |
+
yt-dlp==2025.4.30
|
tools.py
ADDED
|
@@ -0,0 +1,359 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import base64
|
| 2 |
+
import os
|
| 3 |
+
from datetime import datetime
|
| 4 |
+
|
| 5 |
+
import pandas as pd
|
| 6 |
+
import requests
|
| 7 |
+
import whisper
|
| 8 |
+
import wikipedia
|
| 9 |
+
from dotenv import find_dotenv, load_dotenv
|
| 10 |
+
from langchain.chat_models import init_chat_model
|
| 11 |
+
from langchain_community.document_loaders import (
|
| 12 |
+
UnstructuredPDFLoader, UnstructuredPowerPointLoader,
|
| 13 |
+
UnstructuredWordDocumentLoader, WebBaseLoader)
|
| 14 |
+
from langchain_community.tools import DuckDuckGoSearchRun
|
| 15 |
+
from langchain_core.prompts import ChatPromptTemplate
|
| 16 |
+
from langchain_core.tools import tool
|
| 17 |
+
from youtube_transcript_api import YouTubeTranscriptApi
|
| 18 |
+
from yt_dlp import YoutubeDL
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
@tool
|
| 22 |
+
def get_weather_info(location: str) -> str:
|
| 23 |
+
"""Fetches dummy weather information for a given location.
|
| 24 |
+
|
| 25 |
+
Usage:
|
| 26 |
+
```
|
| 27 |
+
# Initialize the tool
|
| 28 |
+
weather_info_tool = Tool(
|
| 29 |
+
name="get_weather_info",
|
| 30 |
+
func=get_weather_info,
|
| 31 |
+
description="Fetches weather information for a given location.")
|
| 32 |
+
```
|
| 33 |
+
"""
|
| 34 |
+
load_dotenv(find_dotenv())
|
| 35 |
+
api_key = os.getenv("OPENWEATHERMAP_API_KEY")
|
| 36 |
+
url = (
|
| 37 |
+
f"https://api.openweathermap.org/data/2.5/"
|
| 38 |
+
f"weather?q={location}&appid={api_key}&units=metric"
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
res = requests.get(url, timeout=15)
|
| 42 |
+
data = res.json()
|
| 43 |
+
humidity = data["main"]["humidity"]
|
| 44 |
+
pressure = data["main"]["pressure"]
|
| 45 |
+
wind = data["wind"]["speed"]
|
| 46 |
+
description = data["weather"][0]["description"]
|
| 47 |
+
temp = data["main"]["temp"]
|
| 48 |
+
min_temp = data["main"]["temp_min"]
|
| 49 |
+
max_temp = data["main"]["temp_max"]
|
| 50 |
+
return (
|
| 51 |
+
f"Weather in {location}: {description}, "
|
| 52 |
+
f"Temperature: {temp}°C, Min: {min_temp}°C, Max: {max_temp}°C, "
|
| 53 |
+
f"Humidity: {humidity}%, Pressure: {pressure} hPa, "
|
| 54 |
+
f"Wind Speed: {wind} m/s"
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
@tool
|
| 59 |
+
def add(a: int, b: int) -> int:
|
| 60 |
+
"""Adds two numbers together.
|
| 61 |
+
|
| 62 |
+
Args:
|
| 63 |
+
a (int): The first number.
|
| 64 |
+
b (int): The second number.
|
| 65 |
+
"""
|
| 66 |
+
return a + b
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
@tool
|
| 70 |
+
def get_sum(list_of_numbers: list[int]) -> int:
|
| 71 |
+
"""Sums a list of numbers.
|
| 72 |
+
|
| 73 |
+
Args:
|
| 74 |
+
list_of_numbers (list[int]): The list of numbers to sum.
|
| 75 |
+
"""
|
| 76 |
+
return sum(list_of_numbers)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
@tool
|
| 80 |
+
def subtract(a: int, b: int) -> int:
|
| 81 |
+
"""Subtracts the second number from the first.
|
| 82 |
+
|
| 83 |
+
Args:
|
| 84 |
+
a (int): The first number.
|
| 85 |
+
b (int): The second number.
|
| 86 |
+
"""
|
| 87 |
+
return a - b
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
@tool
|
| 91 |
+
def multiply(a: int, b: int) -> int:
|
| 92 |
+
"""Multiplies two numbers together.
|
| 93 |
+
|
| 94 |
+
Args:
|
| 95 |
+
a (int): The first number.
|
| 96 |
+
b (int): The second number.
|
| 97 |
+
"""
|
| 98 |
+
return a * b
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
@tool
|
| 102 |
+
def divide(a: int, b: int) -> float:
|
| 103 |
+
"""Divides the first number by the second.
|
| 104 |
+
|
| 105 |
+
Args:
|
| 106 |
+
a (int): The first number.
|
| 107 |
+
b (int): The second number.
|
| 108 |
+
"""
|
| 109 |
+
if b == 0:
|
| 110 |
+
raise ValueError("Cannot divide by zero.")
|
| 111 |
+
return a / b
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
@tool
|
| 115 |
+
def get_current_time_and_date() -> str:
|
| 116 |
+
"""Returns the current time and date in ISO format."""
|
| 117 |
+
return datetime.now().isoformat()
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
@tool
|
| 121 |
+
def reverse_text(text: str) -> str:
|
| 122 |
+
"""Reverses the given text.
|
| 123 |
+
|
| 124 |
+
Args:
|
| 125 |
+
text (str): The text to reverse.
|
| 126 |
+
"""
|
| 127 |
+
return text[::-1]
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
@tool
|
| 131 |
+
def wiki_search(query: str) -> str:
|
| 132 |
+
"""Searches Wikipedia for a given query and returns the summary.
|
| 133 |
+
|
| 134 |
+
Args:
|
| 135 |
+
query (str): The search query.
|
| 136 |
+
"""
|
| 137 |
+
search_results = wikipedia.search(query)
|
| 138 |
+
if not search_results:
|
| 139 |
+
return "No results found."
|
| 140 |
+
page_title = search_results[0]
|
| 141 |
+
summary = wikipedia.summary(page_title)
|
| 142 |
+
# Alternatively wikipedia.page(page_title).content[:max_length]
|
| 143 |
+
return f"Title: {page_title}\n\nSummary: {summary}"
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
@tool
|
| 147 |
+
def web_search(query: str) -> str:
|
| 148 |
+
"""Searches the web for a given query and returns the first result.
|
| 149 |
+
|
| 150 |
+
Args:
|
| 151 |
+
query (str): The search query.
|
| 152 |
+
"""
|
| 153 |
+
search_tool = DuckDuckGoSearchRun()
|
| 154 |
+
results = search_tool.invoke(query)
|
| 155 |
+
if results:
|
| 156 |
+
return results
|
| 157 |
+
else:
|
| 158 |
+
return "No results found."
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
@tool
|
| 162 |
+
def visit_website(url: str) -> str:
|
| 163 |
+
"""Visits a website and returns the content.
|
| 164 |
+
|
| 165 |
+
Args:
|
| 166 |
+
url (str): The URL of the website to visit.
|
| 167 |
+
"""
|
| 168 |
+
loader = WebBaseLoader(url)
|
| 169 |
+
documents = loader.load()
|
| 170 |
+
if documents:
|
| 171 |
+
return documents[0].page_content
|
| 172 |
+
else:
|
| 173 |
+
return "No content found."
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
@tool
|
| 177 |
+
def get_youtube_transcript(video_url: str, return_timestamps: bool = False) -> str:
|
| 178 |
+
"""Fetches the transcript of a YouTube video.
|
| 179 |
+
|
| 180 |
+
Args:
|
| 181 |
+
video_url (str): The URL of the YouTube video.
|
| 182 |
+
return_timestamps (bool): If True, returns timestamps with the transcript. Otherwise, returns only the text.
|
| 183 |
+
"""
|
| 184 |
+
try:
|
| 185 |
+
video_id = video_url.split("v=")[-1]
|
| 186 |
+
transcript = YouTubeTranscriptApi.get_transcript(video_id)
|
| 187 |
+
if return_timestamps:
|
| 188 |
+
sentences = []
|
| 189 |
+
for t in transcript:
|
| 190 |
+
start = t["start"]
|
| 191 |
+
end = start + t["duration"]
|
| 192 |
+
sentences.append(f"{start:.2f} - {end:.2f}: {t['text']}")
|
| 193 |
+
return "\n".join(sentences)
|
| 194 |
+
else:
|
| 195 |
+
return "\n".join([t["text"] for t in transcript])
|
| 196 |
+
except Exception as e:
|
| 197 |
+
return f"Error fetching transcript: {e}"
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
@tool
|
| 201 |
+
def get_youtube_video_info(video_url: str) -> str:
|
| 202 |
+
"""Fetches information about a YouTube video.
|
| 203 |
+
|
| 204 |
+
Args:
|
| 205 |
+
video_url (str): The URL of the YouTube video.
|
| 206 |
+
"""
|
| 207 |
+
try:
|
| 208 |
+
ydl_opts = {
|
| 209 |
+
"quiet": True,
|
| 210 |
+
"skip_download": True,
|
| 211 |
+
}
|
| 212 |
+
with YoutubeDL(ydl_opts) as ydl:
|
| 213 |
+
info = ydl.extract_info(video_url, download=False)
|
| 214 |
+
video_info = {
|
| 215 |
+
"Title": info.get("title"),
|
| 216 |
+
"Description": info.get("description"),
|
| 217 |
+
"Uploader": info.get("uploader"),
|
| 218 |
+
"Upload date": info.get("upload_date"),
|
| 219 |
+
"Duration": info.get("duration"),
|
| 220 |
+
"View count": info.get("view_count"),
|
| 221 |
+
"Like count": info.get("like_count"),
|
| 222 |
+
}
|
| 223 |
+
video_info_filtered = {k: v for k, v in video_info.items() if v is not None}
|
| 224 |
+
video_info_str = "\n".join(
|
| 225 |
+
[f"{k}: {v}" for k, v in video_info_filtered.items()]
|
| 226 |
+
)
|
| 227 |
+
return video_info_str
|
| 228 |
+
except Exception as e:
|
| 229 |
+
return f"Error fetching video info: {e}"
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
def encode_image(image_path):
|
| 233 |
+
with open(image_path, "rb") as image_file:
|
| 234 |
+
return base64.b64encode(image_file.read()).decode("utf-8")
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
@tool
|
| 238 |
+
def ask_about_image(image_path: str, question: str) -> str:
|
| 239 |
+
"""Performs vision-based question answering on an image.
|
| 240 |
+
|
| 241 |
+
Args:
|
| 242 |
+
image_path (str): The path to the image file.
|
| 243 |
+
question (str): Your question about the image, as a natural language sentence. Provide as much context as possible.
|
| 244 |
+
"""
|
| 245 |
+
load_dotenv(find_dotenv())
|
| 246 |
+
llm = init_chat_model("groq:meta-llama/llama-4-scout-17b-16e-instruct")
|
| 247 |
+
prompt = ChatPromptTemplate(
|
| 248 |
+
[
|
| 249 |
+
{
|
| 250 |
+
"role": "user",
|
| 251 |
+
"content": [
|
| 252 |
+
{
|
| 253 |
+
"type": "text",
|
| 254 |
+
"text": "Please write a concise caption for the image that helps answer the following question: {question}",
|
| 255 |
+
},
|
| 256 |
+
{
|
| 257 |
+
"type": "image_url",
|
| 258 |
+
"image_url": {
|
| 259 |
+
"url": "data:image/jpeg;base64,{base64_image}",
|
| 260 |
+
},
|
| 261 |
+
},
|
| 262 |
+
],
|
| 263 |
+
}
|
| 264 |
+
]
|
| 265 |
+
)
|
| 266 |
+
chain = prompt | llm
|
| 267 |
+
response = chain.invoke(
|
| 268 |
+
{"question": question, "base64_image": encode_image(image_path)}
|
| 269 |
+
)
|
| 270 |
+
return response.text()
|
| 271 |
+
|
| 272 |
+
|
| 273 |
+
def transcribe_audio(audio_path: str) -> str:
|
| 274 |
+
"""Transcribes audio to text.
|
| 275 |
+
|
| 276 |
+
Args:
|
| 277 |
+
audio_path (str): The path to the audio file.
|
| 278 |
+
"""
|
| 279 |
+
model = whisper.load_model("base")
|
| 280 |
+
result = model.transcribe(audio_path)
|
| 281 |
+
text = result.text
|
| 282 |
+
return text
|
| 283 |
+
|
| 284 |
+
|
| 285 |
+
def get_table_description(table: pd.DataFrame) -> str:
|
| 286 |
+
"""Generates a description of the table. If applicable, calculates sum and mean of numeric
|
| 287 |
+
columns.
|
| 288 |
+
|
| 289 |
+
Args:
|
| 290 |
+
table (pd.DataFrame): The table to describe.
|
| 291 |
+
"""
|
| 292 |
+
if table.empty:
|
| 293 |
+
return "The table is empty."
|
| 294 |
+
description = []
|
| 295 |
+
total_sum = 0
|
| 296 |
+
for column in table.select_dtypes(include=[int, float]).columns:
|
| 297 |
+
column_sum = table[column].sum()
|
| 298 |
+
column_mean = table[column].mean()
|
| 299 |
+
description.append(
|
| 300 |
+
f"Column '{column}': Sum = {column_sum}, Mean = {column_mean:.2f}"
|
| 301 |
+
)
|
| 302 |
+
total_sum += column_sum
|
| 303 |
+
if total_sum:
|
| 304 |
+
description.append(f"Total Sum of all numeric columns: {total_sum}")
|
| 305 |
+
if description:
|
| 306 |
+
description = "\n".join(description)
|
| 307 |
+
else:
|
| 308 |
+
description = "No numeric columns to summarize."
|
| 309 |
+
# Add the number of rows and columns
|
| 310 |
+
description += f"\n\nTable has {table.shape[0]} rows and {table.shape[1]} columns."
|
| 311 |
+
df_as_markdown = table.to_markdown()
|
| 312 |
+
description += f"\n\nTable:\n{df_as_markdown}"
|
| 313 |
+
return description
|
| 314 |
+
|
| 315 |
+
|
| 316 |
+
@tool
|
| 317 |
+
def inspect_file_as_text(file_path: str) -> str:
|
| 318 |
+
"""This tool reads a file as markdown text. It handles [".csv", ".xlsx", ".pptx", ".wav",
|
| 319 |
+
".mp3", ".m4a", ".flac", ".pdf", ".docx"], and all other types of text files. IT DOES NOT
|
| 320 |
+
HANDLE IMAGES.
|
| 321 |
+
|
| 322 |
+
Args:
|
| 323 |
+
file_path (str): The path to the file you want to read as text. If it is an image, use `vision_qa` tool.
|
| 324 |
+
"""
|
| 325 |
+
try:
|
| 326 |
+
suffix = os.path.splitext(file_path)[-1]
|
| 327 |
+
if suffix in [".jpg", ".jpeg", ".png", ".gif", ".bmp", ".tiff"]:
|
| 328 |
+
raise Exception(
|
| 329 |
+
"Cannot use inspect_file_as_text tool with images: use `vision_qa` tool instead!"
|
| 330 |
+
)
|
| 331 |
+
if suffix in [".csv", ".tsv", ".xlsx"]:
|
| 332 |
+
if suffix == ".csv":
|
| 333 |
+
df = pd.read_csv(file_path)
|
| 334 |
+
elif suffix == ".tsv":
|
| 335 |
+
df = pd.read_csv(file_path, sep="\t")
|
| 336 |
+
elif suffix == ".xlsx":
|
| 337 |
+
df = pd.read_excel(file_path)
|
| 338 |
+
else:
|
| 339 |
+
raise Exception(f"Unsupported file type: {suffix}")
|
| 340 |
+
table_description = get_table_description(df)
|
| 341 |
+
return table_description
|
| 342 |
+
elif suffix == ".pptx":
|
| 343 |
+
doc = UnstructuredPowerPointLoader(file_path)
|
| 344 |
+
return doc.load()[0].page_content
|
| 345 |
+
elif suffix == ".pdf":
|
| 346 |
+
doc = UnstructuredPDFLoader(file_path)
|
| 347 |
+
return doc.load()[0].page_content
|
| 348 |
+
elif suffix == ".docx":
|
| 349 |
+
doc = UnstructuredWordDocumentLoader(file_path)
|
| 350 |
+
return doc.load()[0].page_content
|
| 351 |
+
elif suffix in [".wav", ".mp3", ".m4a", ".flac"]:
|
| 352 |
+
return transcribe_audio(file_path)
|
| 353 |
+
else:
|
| 354 |
+
# All other text files
|
| 355 |
+
with open(file_path, "r", encoding="utf-8") as file:
|
| 356 |
+
content = file.read()
|
| 357 |
+
return content
|
| 358 |
+
except Exception as e:
|
| 359 |
+
return f"Error file: {e}"
|