Spaces:
Running
Running
Update Space (evaluate main: 9be38a7c)
Browse files- README.md +6 -6
- perplexity.py +6 -6
README.md
CHANGED
|
@@ -37,13 +37,13 @@ The metric takes a list of text as input, as well as the name of the model used
|
|
| 37 |
```python
|
| 38 |
from evaluate import load
|
| 39 |
perplexity = load("perplexity", module_type="metric")
|
| 40 |
-
results = perplexity.compute(
|
| 41 |
```
|
| 42 |
|
| 43 |
### Inputs
|
| 44 |
- **model_id** (str): model used for calculating Perplexity. NOTE: Perplexity can only be calculated for causal language models.
|
| 45 |
- This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )
|
| 46 |
-
- **
|
| 47 |
- **batch_size** (int): the batch size to run texts through the model. Defaults to 16.
|
| 48 |
- **add_start_token** (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True.
|
| 49 |
- **device** (str): device to run on, defaults to 'cuda' when available
|
|
@@ -62,13 +62,13 @@ This metric's range is 0 and up. A lower score is better.
|
|
| 62 |
|
| 63 |
|
| 64 |
### Examples
|
| 65 |
-
Calculating perplexity on
|
| 66 |
```python
|
| 67 |
perplexity = evaluate.load("perplexity", module_type="metric")
|
| 68 |
input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]
|
| 69 |
results = perplexity.compute(model_id='gpt2',
|
| 70 |
add_start_token=False,
|
| 71 |
-
|
| 72 |
print(list(results.keys()))
|
| 73 |
>>>['perplexities', 'mean_perplexity']
|
| 74 |
print(round(results["mean_perplexity"], 2))
|
|
@@ -76,7 +76,7 @@ print(round(results["mean_perplexity"], 2))
|
|
| 76 |
print(round(results["perplexities"][0], 2))
|
| 77 |
>>>11.11
|
| 78 |
```
|
| 79 |
-
Calculating perplexity on
|
| 80 |
```python
|
| 81 |
perplexity = evaluate.load("perplexity", module_type="metric")
|
| 82 |
input_texts = datasets.load_dataset("wikitext",
|
|
@@ -84,7 +84,7 @@ input_texts = datasets.load_dataset("wikitext",
|
|
| 84 |
split="test")["text"][:50]
|
| 85 |
input_texts = [s for s in input_texts if s!='']
|
| 86 |
results = perplexity.compute(model_id='gpt2',
|
| 87 |
-
|
| 88 |
print(list(results.keys()))
|
| 89 |
>>>['perplexities', 'mean_perplexity']
|
| 90 |
print(round(results["mean_perplexity"], 2))
|
|
|
|
| 37 |
```python
|
| 38 |
from evaluate import load
|
| 39 |
perplexity = load("perplexity", module_type="metric")
|
| 40 |
+
results = perplexity.compute(predictions=predictions, model_id='gpt2')
|
| 41 |
```
|
| 42 |
|
| 43 |
### Inputs
|
| 44 |
- **model_id** (str): model used for calculating Perplexity. NOTE: Perplexity can only be calculated for causal language models.
|
| 45 |
- This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )
|
| 46 |
+
- **predictions** (list of str): input text, each separate text snippet is one list entry.
|
| 47 |
- **batch_size** (int): the batch size to run texts through the model. Defaults to 16.
|
| 48 |
- **add_start_token** (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True.
|
| 49 |
- **device** (str): device to run on, defaults to 'cuda' when available
|
|
|
|
| 62 |
|
| 63 |
|
| 64 |
### Examples
|
| 65 |
+
Calculating perplexity on predictions defined here:
|
| 66 |
```python
|
| 67 |
perplexity = evaluate.load("perplexity", module_type="metric")
|
| 68 |
input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]
|
| 69 |
results = perplexity.compute(model_id='gpt2',
|
| 70 |
add_start_token=False,
|
| 71 |
+
predictions=input_texts)
|
| 72 |
print(list(results.keys()))
|
| 73 |
>>>['perplexities', 'mean_perplexity']
|
| 74 |
print(round(results["mean_perplexity"], 2))
|
|
|
|
| 76 |
print(round(results["perplexities"][0], 2))
|
| 77 |
>>>11.11
|
| 78 |
```
|
| 79 |
+
Calculating perplexity on predictions loaded in from a dataset:
|
| 80 |
```python
|
| 81 |
perplexity = evaluate.load("perplexity", module_type="metric")
|
| 82 |
input_texts = datasets.load_dataset("wikitext",
|
|
|
|
| 84 |
split="test")["text"][:50]
|
| 85 |
input_texts = [s for s in input_texts if s!='']
|
| 86 |
results = perplexity.compute(model_id='gpt2',
|
| 87 |
+
predictions=input_texts)
|
| 88 |
print(list(results.keys()))
|
| 89 |
>>>['perplexities', 'mean_perplexity']
|
| 90 |
print(round(results["mean_perplexity"], 2))
|
perplexity.py
CHANGED
|
@@ -43,7 +43,7 @@ Args:
|
|
| 43 |
in the AutoModelForCausalLM documentation here:
|
| 44 |
https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )
|
| 45 |
|
| 46 |
-
|
| 47 |
is one list entry.
|
| 48 |
batch_size (int): the batch size to run texts through the model. Defaults to 16.
|
| 49 |
add_start_token (bool): whether to add the start token to the texts,
|
|
@@ -60,7 +60,7 @@ Examples:
|
|
| 60 |
>>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]
|
| 61 |
>>> results = perplexity.compute(model_id='gpt2',
|
| 62 |
... add_start_token=False,
|
| 63 |
-
...
|
| 64 |
>>> print(list(results.keys()))
|
| 65 |
['perplexities', 'mean_perplexity']
|
| 66 |
>>> print(round(results["mean_perplexity"], 2))
|
|
@@ -74,7 +74,7 @@ Examples:
|
|
| 74 |
>>> input_texts = load_dataset("wikitext", "wikitext-2-raw-v1", split="test")["text"][:10] # doctest: +SKIP
|
| 75 |
>>> input_texts = [s for s in input_texts if s!='']
|
| 76 |
>>> results = perplexity.compute(model_id='gpt2',
|
| 77 |
-
...
|
| 78 |
>>> print(list(results.keys()))
|
| 79 |
['perplexities', 'mean_perplexity']
|
| 80 |
>>> print(round(results["mean_perplexity"], 2)) # doctest: +SKIP
|
|
@@ -94,13 +94,13 @@ class Perplexity(evaluate.EvaluationModule):
|
|
| 94 |
inputs_description=_KWARGS_DESCRIPTION,
|
| 95 |
features=datasets.Features(
|
| 96 |
{
|
| 97 |
-
"
|
| 98 |
}
|
| 99 |
),
|
| 100 |
reference_urls=["https://huggingface.co/docs/transformers/perplexity"],
|
| 101 |
)
|
| 102 |
|
| 103 |
-
def _compute(self,
|
| 104 |
|
| 105 |
if device is not None:
|
| 106 |
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
|
|
@@ -136,7 +136,7 @@ class Perplexity(evaluate.EvaluationModule):
|
|
| 136 |
max_tokenized_len = model.config.max_length
|
| 137 |
|
| 138 |
encodings = tokenizer(
|
| 139 |
-
|
| 140 |
add_special_tokens=False,
|
| 141 |
padding=True,
|
| 142 |
truncation=True,
|
|
|
|
| 43 |
in the AutoModelForCausalLM documentation here:
|
| 44 |
https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )
|
| 45 |
|
| 46 |
+
predictions (list of str): input text, each separate text snippet
|
| 47 |
is one list entry.
|
| 48 |
batch_size (int): the batch size to run texts through the model. Defaults to 16.
|
| 49 |
add_start_token (bool): whether to add the start token to the texts,
|
|
|
|
| 60 |
>>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]
|
| 61 |
>>> results = perplexity.compute(model_id='gpt2',
|
| 62 |
... add_start_token=False,
|
| 63 |
+
... predictions=input_texts) # doctest:+ELLIPSIS
|
| 64 |
>>> print(list(results.keys()))
|
| 65 |
['perplexities', 'mean_perplexity']
|
| 66 |
>>> print(round(results["mean_perplexity"], 2))
|
|
|
|
| 74 |
>>> input_texts = load_dataset("wikitext", "wikitext-2-raw-v1", split="test")["text"][:10] # doctest: +SKIP
|
| 75 |
>>> input_texts = [s for s in input_texts if s!='']
|
| 76 |
>>> results = perplexity.compute(model_id='gpt2',
|
| 77 |
+
... predictions=input_texts)
|
| 78 |
>>> print(list(results.keys()))
|
| 79 |
['perplexities', 'mean_perplexity']
|
| 80 |
>>> print(round(results["mean_perplexity"], 2)) # doctest: +SKIP
|
|
|
|
| 94 |
inputs_description=_KWARGS_DESCRIPTION,
|
| 95 |
features=datasets.Features(
|
| 96 |
{
|
| 97 |
+
"predictions": datasets.Value("string"),
|
| 98 |
}
|
| 99 |
),
|
| 100 |
reference_urls=["https://huggingface.co/docs/transformers/perplexity"],
|
| 101 |
)
|
| 102 |
|
| 103 |
+
def _compute(self, predictions, model_id, batch_size: int = 16, add_start_token: bool = True, device=None):
|
| 104 |
|
| 105 |
if device is not None:
|
| 106 |
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
|
|
|
|
| 136 |
max_tokenized_len = model.config.max_length
|
| 137 |
|
| 138 |
encodings = tokenizer(
|
| 139 |
+
predictions,
|
| 140 |
add_special_tokens=False,
|
| 141 |
padding=True,
|
| 142 |
truncation=True,
|