Piyazon
added roman girl ug
b9f7142
import gradio as gr
from transformers import VitsModel, AutoTokenizer
import torch
import numpy as np
import soundfile as sf
import io
import os
import string
import unicodedata
from pypinyin import pinyin, Style
import re
from umsc import UgMultiScriptConverter
# Initialize uyghur script converter
ug_arab_to_latn = UgMultiScriptConverter('UAS', 'ULS')
ug_latn_to_arab = UgMultiScriptConverter('ULS', 'UAS')
from huggingface_hub import login
if os.environ.get("HF_TOKEN"):
login(token=os.environ["HF_TOKEN"])
def number_to_uyghur_arabic_script(number_str):
"""
Converts a number (integer, decimal, fraction, percentage, or ordinal) up to 9 digits (integer and decimal)
to its Uyghur pronunciation in Arabic script. Decimal part is pronounced as a whole number with a fractional term.
Ordinals use the -ىنجى suffix for all numbers up to 9 digits, with special forms for single digits.
Args:
number_str (str): Number as a string (e.g., '123', '0.001', '1/4', '25%', '1968_', '123456789').
Returns:
str: Uyghur pronunciation in Arabic script.
"""
# Uyghur number words in Arabic script
digits = {
0: 'نۆل', 1: 'بىر', 2: 'ئىككى', 3: 'ئۈچ', 4: 'تۆت', 5: 'بەش',
6: 'ئالتە', 7: 'يەتتە', 8: 'سەككىز', 9: 'توققۇز'
}
ordinals = {
1: 'بىرىنجى', 2: 'ئىككىنجى', 3: 'ئۈچىنجى', 4: 'تۆتىنجى', 5: 'بەشىنجى',
6: 'ئالتىنجى', 7: 'يەتتىنجى', 8: 'سەككىزىنجى', 9: 'توققۇزىنجى'
}
tens = {
10: 'ئون', 20: 'يىگىرمە', 30: 'ئوتتۇز', 40: 'قىرىق', 50: 'ئەللىك',
60: 'ئاتمىش', 70: 'يەتمىش', 80: 'سەكسەن', 90: 'توقسان'
}
units = [
(1000000000, 'مىليارد'), # billion
(1000000, 'مىليون'), # million
(1000, 'مىڭ'), # thousand
(100, 'يۈز') # hundred
]
fractions = {
1: 'ئوندا', # tenths
2: 'يۈزدە', # hundredths
3: 'مىڭدە', # thousandths
4: 'ئون مىڭدە', # ten-thousandths
5: 'يۈز مىڭدە', # hundred-thousandths
6: 'مىليوندا', # millionths
7: 'ئون مىليوندا', # ten-millionths
8: 'يۈز مىليوندا', # hundred-millionths
9: 'مىليارددا' # billionths
}
# Convert integer part to words
def integer_to_words(num):
if num == 0:
return digits[0]
result = []
num = int(num)
# Handle large units (billion, million, thousand, hundred)
for value, unit_name in units:
if num >= value:
count = num // value
if count == 1 and value >= 100: # e.g., 100 → "يۈز", not "بىر يۈز"
result.append(unit_name)
else:
result.append(integer_to_words(count) + ' ' + unit_name)
num %= value
# Handle tens and ones
if num >= 10 and num in tens:
result.append(tens[num])
elif num > 10:
ten = (num // 10) * 10
one = num % 10
if one == 0:
result.append(tens[ten])
else:
result.append(tens[ten] + ' ' + digits[one])
elif num > 0:
result.append(digits[num])
return ' '.join(result)
# Clean the input (remove commas or spaces)
number_str = number_str.replace(',', '').replace(' ', '')
# Check for ordinal (ends with '_')
is_ordinal = number_str.endswith('_') or number_str.endswith('-')
if is_ordinal:
number_str = number_str[:-1] # Remove the _ sign
num = int(number_str)
if num > 999999999:
# raise ValueError("Ordinal number exceeds 9 digits")
return number_str
if num in ordinals: # Use special forms for single-digit ordinals
return ordinals[num]
# Convert to words and modify the last word for ordinal
words = integer_to_words(num).split()
last_num = num % 100 # Get the last two digits to handle tens and ones
if last_num in tens:
words[-1] = tens[last_num] + 'ىنجى ' # e.g., 60_ → ئاتمىشىنجى
elif last_num % 10 == 0 and last_num > 0:
words[-1] = tens[last_num] + 'ىنجى ' # e.g., 60_ → ئاتمىشىنجى
else:
last_digit = num % 10
if last_digit in ordinals:
words[-1] = ordinals[last_digit] + ' ' # Replace last digit with ordinal form
elif last_digit == 0:
words[-1] += 'ىنجى'
return ' '.join(words)
# Check for percentage
is_percentage = number_str.endswith('%')
if is_percentage:
number_str = number_str[:-1] # Remove the % sign
# Check for fraction
if '/' in number_str:
numerator, denominator = map(int, number_str.split('/'))
if numerator in digits and denominator in digits:
return f"{digits[denominator]}دە {digits[numerator]}"
else:
# raise ValueError("Fractions are only supported for single-digit numerators and denominators")
return number_str
# Split into integer and decimal parts
parts = number_str.split('.')
integer_part = parts[0]
decimal_part = parts[1] if len(parts) > 1 else None
# Validate integer part (up to 9 digits)
if len(integer_part) > 9:
# raise ValueError("Integer part exceeds 9 digits")
return number_str
# Validate decimal part (up to 9 digits)
if decimal_part and len(decimal_part) > 9:
# raise ValueError("Decimal part exceeds 9 digits")
return number_str
# Convert the integer part
pronunciation = integer_to_words(int(integer_part))
# Handle decimal part as a whole number with fractional term
if decimal_part:
pronunciation += ' پۈتۈن'
if decimal_part != '0': # Only pronounce non-zero decimal parts
decimal_value = int(decimal_part.rstrip('0')) # Remove trailing zeros
decimal_places = len(decimal_part.rstrip('0')) # Count significant decimal places
fraction_term = fractions.get(decimal_places, 'مىليارددا') # Fallback for beyond 9 digits
pronunciation += ' ' + fraction_term + ' ' + integer_to_words(decimal_value)
# Append percentage term if applicable
if is_percentage:
pronunciation += ' پىرسەنت'
return pronunciation.strip()
# return pronunciation
def process_uyghur_text_with_numbers(text):
"""
Processes a string containing Uyghur text and numbers, converting valid numbers to their
Uyghur pronunciation in Arabic script while preserving non-numeric text.
Args:
text (str): Input string with Uyghur text and numbers (e.g., '1/4 كىلو 25% تەملىك').
Returns:
str: String with numbers converted to Uyghur pronunciation, non-numeric text preserved.
"""
text = text.replace('%', ' پىرسەنت ')
# Valid number characters and symbols
digits = '0123456789'
number_symbols = '/.%_-'
result = []
i = 0
while i < len(text):
# Check for spaces and preserve them
if text[i].isspace():
result.append(text[i])
i += 1
continue
# Try to identify a number (fraction, percentage, ordinal, decimal, or integer)
number_start = i
number_str = ''
is_number = False
# Collect potential number characters
while i < len(text) and (text[i] in digits or text[i] in number_symbols):
number_str += text[i]
i += 1
is_number = True
# If we found a potential number, validate and convert it
if is_number:
# Check if the string is a valid number format
valid = False
if '/' in number_str and number_str.count('/') == 1:
# Fraction: e.g., "1/4"
num, denom = number_str.split('/')
if num.isdigit() and denom.isdigit():
valid = True
elif number_str.endswith('%'):
# Percentage: e.g., "25%"
if number_str[:-1].isdigit():
valid = True
elif number_str.endswith('_') or number_str.endswith('-'):
# Ordinal: e.g., "1_"
if number_str[:-1].isdigit():
valid = True
elif '.' in number_str and number_str.count('.') == 1:
# Decimal: e.g., "3.14"
whole, frac = number_str.split('.')
if whole.isdigit() and frac.isdigit():
valid = True
elif number_str.isdigit():
# Integer: e.g., "123"
valid = True
if valid:
try:
# Convert the number to Uyghur pronunciation
converted = number_to_uyghur_arabic_script(number_str)
result.append(converted)
except ValueError:
# If conversion fails, append the original number string
result.append(number_str)
else:
# If not a valid number format, treat as regular text
result.append(number_str)
else:
# Non-number character, append as is
result.append(text[i])
i += 1
# Join the result list into a string
return ''.join(result)
def fix_pauctuations(batch):
batch = batch.lower()
batch = unicodedata.normalize('NFKC', batch)
# extra_punctuation = "–؛;،؟?«»‹›−—¬”“•…" # Add your additional custom punctuation from the training set here
# all_punctuation = string.punctuation + extra_punctuation
# for char in all_punctuation:
# batch = batch.replace(char, ' ')
## replace ug chars
# Replace 'ژ' with 'ج'
batch = batch.replace('ژ', 'ج')
batch = batch.replace('ک', 'ك')
batch = batch.replace('ی', 'ى')
batch = batch.replace('ه', 'ە')
vocab = [" ", "ئ", "ا", "ب", "ت", "ج", "خ", "د", "ر", "ز", "س", "ش", "غ", "ف", "ق", "ك", "ل", "م", "ن", "و", "ى", "ي", "پ", "چ", "ڭ", "گ", "ھ", "ۆ", "ۇ", "ۈ", "ۋ", "ې", "ە"]
# Process each character in the batch
result = []
for char in batch:
if char in vocab:
result.append(char)
elif char in {'.', '?', '؟'}:
result.append(' ') # Replace dot with two spaces
else:
result.append(' ') # Replace other non-vocab characters with one space
# Join the result into a string
return ''.join(result)
def chinese_to_pinyin(mixed_text):
"""
Convert Chinese characters in a mixed-language string to Pinyin without tone marks,
preserving non-Chinese text, using only English letters.
Args:
mixed_text (str): Input string containing Chinese characters and other languages (e.g., English, Uyghur)
Returns:
str: String with Chinese characters converted to Pinyin (no tone marks), non-Chinese text unchanged
"""
# Regular expression to match Chinese characters (Unicode range for CJK Unified Ideographs)
chinese_pattern = re.compile(r'[\u4e00-\u9fff]+')
def replace_chinese(match):
chinese_text = match.group(0)
# Convert Chinese to Pinyin without tone marks, join syllables with spaces
pinyin_list = pinyin(chinese_text, style=Style.NORMAL)
return ' '.join([item[0] for item in pinyin_list])
# Replace Chinese characters with their Pinyin, leave other text unchanged
result = chinese_pattern.sub(replace_chinese, mixed_text)
return result
# Dictionary of available TTS models
MODEL_OPTIONS = {
# "Uyghur (Arabic script, Ali-Ug)": "piyazon/AliKurban",
# "Uyghur (Arabic script, Radio-RVC-Ali-Ug)": "piyazon/TTS-CV-Radio-RVC-Alikurban-Ug",
# "Uyghur (Arabic script, CV_Unique)": "piyazon/TTS-CV-Unique-Ug",
"Uyghur (Arabic script, CV_Unique-2)": "piyazon/TTS-CV-Unique-Ug-2",
"Uyghur (Arabic script, Roman-Girl_Ug)": "piyazon/TTS-Roman-Girl-Ug",
# "Uyghur (Arabic script, Radio-Ug)": "piyazon/TTS-Radio-Ug",
# "Uyghur (Arabic script, Radio-Girl-Ug)": "piyazon/TTS-Radio-Girl-Ug",
"Uyghur (Arabic script, QutadguBilik)": "piyazon/qutadgu_bilik",
"Uyghur (Arabic script, MMS-TTS)": "facebook/mms-tts-uig-script_arabic",
}
# Cache for loaded models and tokenizers
model_cache = {}
tokenizer_cache = {}
def load_model_and_tokenizer(model_name):
# Load model and tokenizer if not already cached
if model_name not in model_cache:
model_cache[model_name] = VitsModel.from_pretrained(MODEL_OPTIONS[model_name])
tokenizer_cache[model_name] = AutoTokenizer.from_pretrained(MODEL_OPTIONS[model_name])
return model_cache[model_name], tokenizer_cache[model_name]
# def fix_string(batch):
# batch = batch.lower()
# batch = unicodedata.normalize('NFKC', batch)
# extra_punctuation = "–؛;،؟?«»‹›−—¬”“•…" # Add your additional custom punctuation from the training set here
# all_punctuation = string.punctuation + extra_punctuation
# for char in all_punctuation:
# batch = batch.replace(char, ' ')
# ## replace ug chars
# # Replace 'ژ' with 'ج'
# batch = batch.replace('ژ', 'ج')
# batch = batch.replace('ک', 'ك')
# batch = batch.replace('ی', 'ى')
# batch = batch.replace('ه', 'ە')
# ## replace nums
# numbers_to_uyghur_map = {
# '0': ' نۆل ',
# '1': ' بىر ',
# '2': ' ئىككى ',
# '3': ' ئۈچ ',
# '4': ' تۆت ',
# '5': ' بەش ',
# '6': ' ئالتە ',
# '7': ' يەتتە ',
# '8': ' سەككىز ',
# '9': ' توققۇز '
# }
# for num_char, uyghur_char in numbers_to_uyghur_map.items():
# batch = batch.replace(num_char, uyghur_char)
# ## replace en chars
# english_to_uyghur_map = {
# 'a': ' ئېي ',
# 'b': ' بى ',
# 'c': ' سى ',
# 'd': ' دى ',
# 'e': ' ئى ',
# 'f': ' ئەف ',
# 'g': ' جى ',
# 'h': ' ئېچ ',
# 'i': ' ئاي ',
# 'j': ' جېي ',
# 'k': ' کېي ',
# 'l': ' ئەل ',
# 'm': ' ئەم ',
# 'n': ' ئېن ',
# 'o': ' ئو ',
# 'p': ' پى ',
# 'q': ' كىيۇ ',
# 'r': ' ئار ',
# 's': ' ئەس ',
# 't': ' تى ',
# 'u': ' يۇ ',
# 'v': ' ۋى ',
# 'w': ' دابىلىيۇ ',
# 'x': ' ئېكىس ',
# 'y': ' ۋاي ',
# 'z': ' زى ',
# }
# for eng_char, uyghur_char in english_to_uyghur_map.items():
# batch = batch.replace(eng_char, uyghur_char)
# return batch
def text_to_speech(text, model_name):
# Load the selected model and tokenizer
model, tokenizer = load_model_and_tokenizer(model_name)
fixted_text = fix_pauctuations(process_uyghur_text_with_numbers(ug_latn_to_arab(chinese_to_pinyin(text))))
print(fixted_text)
# Tokenize input text
inputs = tokenizer(fixted_text, return_tensors="pt")
# Generate speech waveform
with torch.no_grad():
output = model(**inputs).waveform
# Convert waveform to numpy array and ensure correct shape
audio_data = output.squeeze().numpy()
sample_rate = model.config.sampling_rate # Get sample rate from model config
# Save audio to a temporary file
temp_file = "output.wav"
sf.write(temp_file, audio_data, sample_rate)
# Read the audio file for Gradio output
with open(temp_file, "rb") as f:
audio_bytes = f.read()
# Clean up temporary file
os.remove(temp_file)
return audio_bytes
# Define examples for Gradio Examples component
examples = [
# ["« ئوكسفورد ئىنگلىز تىلى لۇغىتى» گە ئاساسلانغاندا، « دەرىجىدىن تاشقىرى چوڭ دۆلەت (superpow) » دېگەن بۇ ئاتالغۇ ئەڭ بۇرۇن 1930-يىلى تىلغا ئېلىنغان. ئىنگلىز تىلىدىكى بۇ ئاتالغۇ بىرقەدەر بۇرۇنقى« powers» (يەنى« كۈچلۈك دۆلەتلەر» ) ۋە« great power» (يەنى« چوڭ دۆلەت» ) دىن كەلگەن. ", "Uyghur (Arabic script, Radio-RVC-Ali-Ug)"],
["ئامېرىكا ئارمىيەسى 1945-يىلى 7-ئاينىڭ 16-كۈنى دۇنيا بويىچە تۇنجى قېتىم« ئۈچنى بىر گەۋدىلەشتۈرۈش» يادرو سىنىقىنى ئېلىپ باردى", "Uyghur (Arabic script, CV_Unique-2)"],
# ["يەنىمۇ ئىلگىرىلىگەن ھالدا تەجرىبە قىلىپ دەلىللەش ۋە تەتقىق قىلىشقا تېگىشلىك بەزى نەزەرىيەلەرنى ھېسابقا ئالمىغاندا، كۆپ قىسىم پىلانلارنىڭ ھەممىسى تاماملانغان، شۇڭا مۇمكىنچىلىك قاتلىمىدىن ئېيتقاندا مانخاتتان پىلانىدا ھېچقانداق مەسىلە يوق.", "Uyghur (Arabic script, Radio-Ug)"],
# ["ھەممە ئادەم ئەركىن بولۇپ تۇغۇلىدۇ، ھەمدە ئىززەت-ھۆرمەت ۋە ھوقۇقتا باب باراۋەر بولىدۇ.", "Uyghur (Arabic script, Radio-Girl-Ug)"],
["بىز ئىنسانلارنىڭ ھەممىسى بىرلىكتە ياشايمىز. ھەر بىر ئادەم ئۆزىنىڭ يولىنى تاللىيالايدۇ.", "Uyghur (Arabic script, QutadguBilik)"],
["بۇ بىر گۈزەل كۈن، ھەممەيلەن بىرلىكتە خۇشال بولايلى. 5 كىشى بىللە ئويۇن ئوينايدۇ.", "Uyghur (Arabic script, MMS-TTS)"],
]
# Create Gradio interface with model selection, RTL text input, and smaller textbox
demo = gr.Interface(
fn=text_to_speech,
inputs=[
gr.Textbox(
label="Enter text to convert to speech",
elem_classes="rtl-text",
elem_id="input-textbox",
lines=6,
max_lines=15
),
gr.Dropdown(
choices=list(MODEL_OPTIONS.keys()),
label="Select TTS Model",
value="Uyghur (Arabic script, CV_Unique-2)" # Default to AliKurban
)
],
outputs=gr.Audio(label="Generated Speech", type="filepath"),
title="Text-to-Speech with MMS-TTS Models",
description="""
Uyghur Text To Speech<br>
<strong style="color:red;">Warning:</strong> This Gradio app is just a demo of Uyghur TTS. For privacy purposes, these voices should not be used for business or personal projects. Anyone wanting to use Uyghur TTS should clone their own voice or obtain authorization from the voice owner to train their own TTS model. For fine-tuning instructions, visit <a href='https://github.com/ylacombe/finetune-hf-vits' target='_blank'>this GitHub repository</a>.
""",
examples=examples,
css="""
@import url('https://fonts.googleapis.com/css2?family=Noto+Sans+Arabic&display=swap');
.rtl-text textarea {
direction: rtl;
width: 100%;
height: 200px;
font-size: 17px;
font-family: "Noto Sans Arabic" !important;
}
.table-wrap{
font-family: "Noto Sans Arabic" !important;
}
"""
)
demo.launch()