|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from collections import OrderedDict |
|
|
import torch |
|
|
import torch.nn.functional as F |
|
|
import torch.utils.checkpoint as cp |
|
|
import torchaudio.compliance.kaldi as Kaldi |
|
|
|
|
|
|
|
|
def pad_list(xs, pad_value): |
|
|
"""Perform padding for the list of tensors. |
|
|
|
|
|
Args: |
|
|
xs (List): List of Tensors [(T_1, `*`), (T_2, `*`), ..., (T_B, `*`)]. |
|
|
pad_value (float): Value for padding. |
|
|
|
|
|
Returns: |
|
|
Tensor: Padded tensor (B, Tmax, `*`). |
|
|
|
|
|
Examples: |
|
|
>>> x = [torch.ones(4), torch.ones(2), torch.ones(1)] |
|
|
>>> x |
|
|
[tensor([1., 1., 1., 1.]), tensor([1., 1.]), tensor([1.])] |
|
|
>>> pad_list(x, 0) |
|
|
tensor([[1., 1., 1., 1.], |
|
|
[1., 1., 0., 0.], |
|
|
[1., 0., 0., 0.]]) |
|
|
|
|
|
""" |
|
|
n_batch = len(xs) |
|
|
max_len = max(x.size(0) for x in xs) |
|
|
pad = xs[0].new(n_batch, max_len, *xs[0].size()[1:]).fill_(pad_value) |
|
|
|
|
|
for i in range(n_batch): |
|
|
pad[i, : xs[i].size(0)] = xs[i] |
|
|
|
|
|
return pad |
|
|
|
|
|
|
|
|
def extract_feature(audio): |
|
|
features = [] |
|
|
feature_times = [] |
|
|
feature_lengths = [] |
|
|
for au in audio: |
|
|
feature = Kaldi.fbank(au.unsqueeze(0), num_mel_bins=80) |
|
|
feature = feature - feature.mean(dim=0, keepdim=True) |
|
|
features.append(feature) |
|
|
feature_times.append(au.shape[0]) |
|
|
feature_lengths.append(feature.shape[0]) |
|
|
|
|
|
features_padded = pad_list(features, pad_value=0) |
|
|
|
|
|
return features_padded, feature_lengths, feature_times |
|
|
|
|
|
|
|
|
class BasicResBlock(torch.nn.Module): |
|
|
expansion = 1 |
|
|
|
|
|
def __init__(self, in_planes, planes, stride=1): |
|
|
super(BasicResBlock, self).__init__() |
|
|
self.conv1 = torch.nn.Conv2d( |
|
|
in_planes, planes, kernel_size=3, stride=(stride, 1), padding=1, bias=False |
|
|
) |
|
|
self.bn1 = torch.nn.BatchNorm2d(planes) |
|
|
self.conv2 = torch.nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) |
|
|
self.bn2 = torch.nn.BatchNorm2d(planes) |
|
|
|
|
|
self.shortcut = torch.nn.Sequential() |
|
|
if stride != 1 or in_planes != self.expansion * planes: |
|
|
self.shortcut = torch.nn.Sequential( |
|
|
torch.nn.Conv2d( |
|
|
in_planes, |
|
|
self.expansion * planes, |
|
|
kernel_size=1, |
|
|
stride=(stride, 1), |
|
|
bias=False, |
|
|
), |
|
|
torch.nn.BatchNorm2d(self.expansion * planes), |
|
|
) |
|
|
|
|
|
def forward(self, x): |
|
|
out = F.relu(self.bn1(self.conv1(x))) |
|
|
out = self.bn2(self.conv2(out)) |
|
|
out += self.shortcut(x) |
|
|
out = F.relu(out) |
|
|
return out |
|
|
|
|
|
|
|
|
class FCM(torch.nn.Module): |
|
|
def __init__(self, block=BasicResBlock, num_blocks=[2, 2], m_channels=32, feat_dim=80): |
|
|
super(FCM, self).__init__() |
|
|
self.in_planes = m_channels |
|
|
self.conv1 = torch.nn.Conv2d(1, m_channels, kernel_size=3, stride=1, padding=1, bias=False) |
|
|
self.bn1 = torch.nn.BatchNorm2d(m_channels) |
|
|
|
|
|
self.layer1 = self._make_layer(block, m_channels, num_blocks[0], stride=2) |
|
|
self.layer2 = self._make_layer(block, m_channels, num_blocks[0], stride=2) |
|
|
|
|
|
self.conv2 = torch.nn.Conv2d( |
|
|
m_channels, m_channels, kernel_size=3, stride=(2, 1), padding=1, bias=False |
|
|
) |
|
|
self.bn2 = torch.nn.BatchNorm2d(m_channels) |
|
|
self.out_channels = m_channels * (feat_dim // 8) |
|
|
|
|
|
def _make_layer(self, block, planes, num_blocks, stride): |
|
|
strides = [stride] + [1] * (num_blocks - 1) |
|
|
layers = [] |
|
|
for stride in strides: |
|
|
layers.append(block(self.in_planes, planes, stride)) |
|
|
self.in_planes = planes * block.expansion |
|
|
return torch.nn.Sequential(*layers) |
|
|
|
|
|
def forward(self, x): |
|
|
x = x.unsqueeze(1) |
|
|
out = F.relu(self.bn1(self.conv1(x))) |
|
|
out = self.layer1(out) |
|
|
out = self.layer2(out) |
|
|
out = F.relu(self.bn2(self.conv2(out))) |
|
|
|
|
|
shape = out.shape |
|
|
out = out.reshape(shape[0], shape[1] * shape[2], shape[3]) |
|
|
return out |
|
|
|
|
|
|
|
|
def get_nonlinear(config_str, channels): |
|
|
nonlinear = torch.nn.Sequential() |
|
|
for name in config_str.split("-"): |
|
|
if name == "relu": |
|
|
nonlinear.add_module("relu", torch.nn.ReLU(inplace=True)) |
|
|
elif name == "prelu": |
|
|
nonlinear.add_module("prelu", torch.nn.PReLU(channels)) |
|
|
elif name == "batchnorm": |
|
|
nonlinear.add_module("batchnorm", torch.nn.BatchNorm1d(channels)) |
|
|
elif name == "batchnorm_": |
|
|
nonlinear.add_module("batchnorm", torch.nn.BatchNorm1d(channels, affine=False)) |
|
|
else: |
|
|
raise ValueError("Unexpected module ({}).".format(name)) |
|
|
return nonlinear |
|
|
|
|
|
|
|
|
def statistics_pooling(x, dim=-1, keepdim=False, unbiased=True, eps=1e-2): |
|
|
mean = x.mean(dim=dim) |
|
|
std = x.std(dim=dim, unbiased=unbiased) |
|
|
stats = torch.cat([mean, std], dim=-1) |
|
|
if keepdim: |
|
|
stats = stats.unsqueeze(dim=dim) |
|
|
return stats |
|
|
|
|
|
|
|
|
class StatsPool(torch.nn.Module): |
|
|
def forward(self, x): |
|
|
return statistics_pooling(x) |
|
|
|
|
|
|
|
|
class TDNNLayer(torch.nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
in_channels, |
|
|
out_channels, |
|
|
kernel_size, |
|
|
stride=1, |
|
|
padding=0, |
|
|
dilation=1, |
|
|
bias=False, |
|
|
config_str="batchnorm-relu", |
|
|
): |
|
|
super(TDNNLayer, self).__init__() |
|
|
if padding < 0: |
|
|
assert ( |
|
|
kernel_size % 2 == 1 |
|
|
), "Expect equal paddings, but got even kernel size ({})".format(kernel_size) |
|
|
padding = (kernel_size - 1) // 2 * dilation |
|
|
self.linear = torch.nn.Conv1d( |
|
|
in_channels, |
|
|
out_channels, |
|
|
kernel_size, |
|
|
stride=stride, |
|
|
padding=padding, |
|
|
dilation=dilation, |
|
|
bias=bias, |
|
|
) |
|
|
self.nonlinear = get_nonlinear(config_str, out_channels) |
|
|
|
|
|
def forward(self, x): |
|
|
x = self.linear(x) |
|
|
x = self.nonlinear(x) |
|
|
return x |
|
|
|
|
|
|
|
|
class CAMLayer(torch.nn.Module): |
|
|
def __init__( |
|
|
self, bn_channels, out_channels, kernel_size, stride, padding, dilation, bias, reduction=2 |
|
|
): |
|
|
super(CAMLayer, self).__init__() |
|
|
self.linear_local = torch.nn.Conv1d( |
|
|
bn_channels, |
|
|
out_channels, |
|
|
kernel_size, |
|
|
stride=stride, |
|
|
padding=padding, |
|
|
dilation=dilation, |
|
|
bias=bias, |
|
|
) |
|
|
self.linear1 = torch.nn.Conv1d(bn_channels, bn_channels // reduction, 1) |
|
|
self.relu = torch.nn.ReLU(inplace=True) |
|
|
self.linear2 = torch.nn.Conv1d(bn_channels // reduction, out_channels, 1) |
|
|
self.sigmoid = torch.nn.Sigmoid() |
|
|
|
|
|
def forward(self, x): |
|
|
y = self.linear_local(x) |
|
|
context = x.mean(-1, keepdim=True) + self.seg_pooling(x) |
|
|
context = self.relu(self.linear1(context)) |
|
|
m = self.sigmoid(self.linear2(context)) |
|
|
return y * m |
|
|
|
|
|
def seg_pooling(self, x, seg_len=100, stype="avg"): |
|
|
if stype == "avg": |
|
|
seg = F.avg_pool1d(x, kernel_size=seg_len, stride=seg_len, ceil_mode=True) |
|
|
elif stype == "max": |
|
|
seg = F.max_pool1d(x, kernel_size=seg_len, stride=seg_len, ceil_mode=True) |
|
|
else: |
|
|
raise ValueError("Wrong segment pooling type.") |
|
|
shape = seg.shape |
|
|
seg = seg.unsqueeze(-1).expand(*shape, seg_len).reshape(*shape[:-1], -1) |
|
|
seg = seg[..., : x.shape[-1]] |
|
|
return seg |
|
|
|
|
|
|
|
|
class CAMDenseTDNNLayer(torch.nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
in_channels, |
|
|
out_channels, |
|
|
bn_channels, |
|
|
kernel_size, |
|
|
stride=1, |
|
|
dilation=1, |
|
|
bias=False, |
|
|
config_str="batchnorm-relu", |
|
|
memory_efficient=False, |
|
|
): |
|
|
super(CAMDenseTDNNLayer, self).__init__() |
|
|
assert kernel_size % 2 == 1, "Expect equal paddings, but got even kernel size ({})".format( |
|
|
kernel_size |
|
|
) |
|
|
padding = (kernel_size - 1) // 2 * dilation |
|
|
self.memory_efficient = memory_efficient |
|
|
self.nonlinear1 = get_nonlinear(config_str, in_channels) |
|
|
self.linear1 = torch.nn.Conv1d(in_channels, bn_channels, 1, bias=False) |
|
|
self.nonlinear2 = get_nonlinear(config_str, bn_channels) |
|
|
self.cam_layer = CAMLayer( |
|
|
bn_channels, |
|
|
out_channels, |
|
|
kernel_size, |
|
|
stride=stride, |
|
|
padding=padding, |
|
|
dilation=dilation, |
|
|
bias=bias, |
|
|
) |
|
|
|
|
|
def bn_function(self, x): |
|
|
return self.linear1(self.nonlinear1(x)) |
|
|
|
|
|
def forward(self, x): |
|
|
if self.training and self.memory_efficient: |
|
|
x = cp.checkpoint(self.bn_function, x) |
|
|
else: |
|
|
x = self.bn_function(x) |
|
|
x = self.cam_layer(self.nonlinear2(x)) |
|
|
return x |
|
|
|
|
|
|
|
|
class CAMDenseTDNNBlock(torch.nn.ModuleList): |
|
|
def __init__( |
|
|
self, |
|
|
num_layers, |
|
|
in_channels, |
|
|
out_channels, |
|
|
bn_channels, |
|
|
kernel_size, |
|
|
stride=1, |
|
|
dilation=1, |
|
|
bias=False, |
|
|
config_str="batchnorm-relu", |
|
|
memory_efficient=False, |
|
|
): |
|
|
super(CAMDenseTDNNBlock, self).__init__() |
|
|
for i in range(num_layers): |
|
|
layer = CAMDenseTDNNLayer( |
|
|
in_channels=in_channels + i * out_channels, |
|
|
out_channels=out_channels, |
|
|
bn_channels=bn_channels, |
|
|
kernel_size=kernel_size, |
|
|
stride=stride, |
|
|
dilation=dilation, |
|
|
bias=bias, |
|
|
config_str=config_str, |
|
|
memory_efficient=memory_efficient, |
|
|
) |
|
|
self.add_module("tdnnd%d" % (i + 1), layer) |
|
|
|
|
|
def forward(self, x): |
|
|
for layer in self: |
|
|
x = torch.cat([x, layer(x)], dim=1) |
|
|
return x |
|
|
|
|
|
|
|
|
class TransitLayer(torch.nn.Module): |
|
|
def __init__(self, in_channels, out_channels, bias=True, config_str="batchnorm-relu"): |
|
|
super(TransitLayer, self).__init__() |
|
|
self.nonlinear = get_nonlinear(config_str, in_channels) |
|
|
self.linear = torch.nn.Conv1d(in_channels, out_channels, 1, bias=bias) |
|
|
|
|
|
def forward(self, x): |
|
|
x = self.nonlinear(x) |
|
|
x = self.linear(x) |
|
|
return x |
|
|
|
|
|
|
|
|
class DenseLayer(torch.nn.Module): |
|
|
def __init__(self, in_channels, out_channels, bias=False, config_str="batchnorm-relu"): |
|
|
super(DenseLayer, self).__init__() |
|
|
self.linear = torch.nn.Conv1d(in_channels, out_channels, 1, bias=bias) |
|
|
self.nonlinear = get_nonlinear(config_str, out_channels) |
|
|
|
|
|
def forward(self, x): |
|
|
if len(x.shape) == 2: |
|
|
x = self.linear(x.unsqueeze(dim=-1)).squeeze(dim=-1) |
|
|
else: |
|
|
x = self.linear(x) |
|
|
x = self.nonlinear(x) |
|
|
return x |
|
|
|
|
|
|
|
|
class CAMPPlus(torch.nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
feat_dim=80, |
|
|
embedding_size=192, |
|
|
growth_rate=32, |
|
|
bn_size=4, |
|
|
init_channels=128, |
|
|
config_str="batchnorm-relu", |
|
|
memory_efficient=True, |
|
|
output_level="segment", |
|
|
**kwargs, |
|
|
): |
|
|
super().__init__() |
|
|
|
|
|
self.head = FCM(feat_dim=feat_dim) |
|
|
channels = self.head.out_channels |
|
|
self.output_level = output_level |
|
|
|
|
|
self.xvector = torch.nn.Sequential( |
|
|
OrderedDict( |
|
|
[ |
|
|
( |
|
|
"tdnn", |
|
|
TDNNLayer( |
|
|
channels, |
|
|
init_channels, |
|
|
5, |
|
|
stride=2, |
|
|
dilation=1, |
|
|
padding=-1, |
|
|
config_str=config_str, |
|
|
), |
|
|
), |
|
|
] |
|
|
) |
|
|
) |
|
|
channels = init_channels |
|
|
for i, (num_layers, kernel_size, dilation) in enumerate( |
|
|
zip((12, 24, 16), (3, 3, 3), (1, 2, 2)) |
|
|
): |
|
|
block = CAMDenseTDNNBlock( |
|
|
num_layers=num_layers, |
|
|
in_channels=channels, |
|
|
out_channels=growth_rate, |
|
|
bn_channels=bn_size * growth_rate, |
|
|
kernel_size=kernel_size, |
|
|
dilation=dilation, |
|
|
config_str=config_str, |
|
|
memory_efficient=memory_efficient, |
|
|
) |
|
|
self.xvector.add_module("block%d" % (i + 1), block) |
|
|
channels = channels + num_layers * growth_rate |
|
|
self.xvector.add_module( |
|
|
"transit%d" % (i + 1), |
|
|
TransitLayer(channels, channels // 2, bias=False, config_str=config_str), |
|
|
) |
|
|
channels //= 2 |
|
|
|
|
|
self.xvector.add_module("out_nonlinear", get_nonlinear(config_str, channels)) |
|
|
|
|
|
if self.output_level == "segment": |
|
|
self.xvector.add_module("stats", StatsPool()) |
|
|
self.xvector.add_module( |
|
|
"dense", DenseLayer(channels * 2, embedding_size, config_str="batchnorm_") |
|
|
) |
|
|
else: |
|
|
assert ( |
|
|
self.output_level == "frame" |
|
|
), "`output_level` should be set to 'segment' or 'frame'. " |
|
|
|
|
|
for m in self.modules(): |
|
|
if isinstance(m, (torch.nn.Conv1d, torch.nn.Linear)): |
|
|
torch.nn.init.kaiming_normal_(m.weight.data) |
|
|
if m.bias is not None: |
|
|
torch.nn.init.zeros_(m.bias) |
|
|
|
|
|
def forward(self, x): |
|
|
x = x.permute(0, 2, 1) |
|
|
x = self.head(x) |
|
|
x = self.xvector(x) |
|
|
if self.output_level == "frame": |
|
|
x = x.transpose(1, 2) |
|
|
return x |
|
|
|
|
|
def inference(self, audio_list): |
|
|
speech, speech_lengths, speech_times = extract_feature(audio_list) |
|
|
results = self.forward(speech.to(torch.float32)) |
|
|
return results |
|
|
|