|
|
from dataclasses import dataclass |
|
|
from pathlib import Path |
|
|
|
|
|
import librosa |
|
|
import torch |
|
|
import perth |
|
|
import torch.nn.functional as F |
|
|
from huggingface_hub import hf_hub_download |
|
|
from safetensors.torch import load_file |
|
|
|
|
|
from .models.t3 import T3 |
|
|
from .models.s3tokenizer import S3_SR, drop_invalid_tokens |
|
|
from .models.s3gen import S3GEN_SR, S3Gen |
|
|
from .models.tokenizers import EnTokenizer |
|
|
from .models.voice_encoder import VoiceEncoder |
|
|
from .models.t3.modules.cond_enc import T3Cond |
|
|
|
|
|
|
|
|
REPO_ID = "ResembleAI/chatterbox" |
|
|
|
|
|
|
|
|
def punc_norm(text: str) -> str: |
|
|
""" |
|
|
Quick cleanup func for punctuation from LLMs or |
|
|
containing chars not seen often in the dataset |
|
|
""" |
|
|
if len(text) == 0: |
|
|
return "You need to add some text for me to talk." |
|
|
|
|
|
|
|
|
if text[0].islower(): |
|
|
text = text[0].upper() + text[1:] |
|
|
|
|
|
|
|
|
text = " ".join(text.split()) |
|
|
|
|
|
|
|
|
punc_to_replace = [ |
|
|
("...", ", "), |
|
|
("…", ", "), |
|
|
(":", ","), |
|
|
(" - ", ", "), |
|
|
(";", ", "), |
|
|
("—", "-"), |
|
|
("–", "-"), |
|
|
(" ,", ","), |
|
|
("“", "\""), |
|
|
("”", "\""), |
|
|
("‘", "'"), |
|
|
("’", "'"), |
|
|
] |
|
|
for old_char_sequence, new_char in punc_to_replace: |
|
|
text = text.replace(old_char_sequence, new_char) |
|
|
|
|
|
|
|
|
text = text.rstrip(" ") |
|
|
sentence_enders = {".", "!", "?", "-", ","} |
|
|
if not any(text.endswith(p) for p in sentence_enders): |
|
|
text += "." |
|
|
|
|
|
return text |
|
|
|
|
|
|
|
|
@dataclass |
|
|
class Conditionals: |
|
|
""" |
|
|
Conditionals for T3 and S3Gen |
|
|
- T3 conditionals: |
|
|
- speaker_emb |
|
|
- clap_emb |
|
|
- cond_prompt_speech_tokens |
|
|
- cond_prompt_speech_emb |
|
|
- emotion_adv |
|
|
- S3Gen conditionals: |
|
|
- prompt_token |
|
|
- prompt_token_len |
|
|
- prompt_feat |
|
|
- prompt_feat_len |
|
|
- embedding |
|
|
""" |
|
|
t3: T3Cond |
|
|
gen: dict |
|
|
|
|
|
def to(self, device): |
|
|
self.t3 = self.t3.to(device=device) |
|
|
for k, v in self.gen.items(): |
|
|
if torch.is_tensor(v): |
|
|
self.gen[k] = v.to(device=device) |
|
|
return self |
|
|
|
|
|
def save(self, fpath: Path): |
|
|
arg_dict = dict( |
|
|
t3=self.t3.__dict__, |
|
|
gen=self.gen |
|
|
) |
|
|
torch.save(arg_dict, fpath) |
|
|
|
|
|
@classmethod |
|
|
def load(cls, fpath, map_location="cpu"): |
|
|
if isinstance(map_location, str): |
|
|
map_location = torch.device(map_location) |
|
|
kwargs = torch.load(fpath, map_location=map_location, weights_only=True) |
|
|
return cls(T3Cond(**kwargs['t3']), kwargs['gen']) |
|
|
|
|
|
|
|
|
class ChatterboxTTS: |
|
|
ENC_COND_LEN = 6 * S3_SR |
|
|
DEC_COND_LEN = 10 * S3GEN_SR |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
t3: T3, |
|
|
s3gen: S3Gen, |
|
|
ve: VoiceEncoder, |
|
|
tokenizer: EnTokenizer, |
|
|
device: str, |
|
|
conds: Conditionals = None, |
|
|
): |
|
|
self.sr = S3GEN_SR |
|
|
self.t3 = t3 |
|
|
self.s3gen = s3gen |
|
|
self.ve = ve |
|
|
self.tokenizer = tokenizer |
|
|
self.device = device |
|
|
self.conds = conds |
|
|
self.watermarker = perth.PerthImplicitWatermarker() |
|
|
|
|
|
@classmethod |
|
|
def from_local(cls, ckpt_dir, device) -> 'ChatterboxTTS': |
|
|
ckpt_dir = Path(ckpt_dir) |
|
|
|
|
|
|
|
|
if device in ["cpu", "mps"]: |
|
|
map_location = torch.device('cpu') |
|
|
else: |
|
|
map_location = None |
|
|
|
|
|
ve = VoiceEncoder() |
|
|
ve.load_state_dict( |
|
|
load_file(ckpt_dir / "ve.safetensors") |
|
|
) |
|
|
ve.to(device).eval() |
|
|
|
|
|
t3 = T3() |
|
|
t3_state = load_file(ckpt_dir / "t3_cfg.safetensors") |
|
|
if "model" in t3_state.keys(): |
|
|
t3_state = t3_state["model"][0] |
|
|
t3.load_state_dict(t3_state) |
|
|
t3.to(device).eval() |
|
|
|
|
|
s3gen = S3Gen() |
|
|
s3gen.load_state_dict( |
|
|
load_file(ckpt_dir / "s3gen.safetensors"), strict=False |
|
|
) |
|
|
s3gen.to(device).eval() |
|
|
|
|
|
tokenizer = EnTokenizer( |
|
|
str(ckpt_dir / "tokenizer.json") |
|
|
) |
|
|
|
|
|
conds = None |
|
|
if (builtin_voice := ckpt_dir / "conds.pt").exists(): |
|
|
conds = Conditionals.load(builtin_voice, map_location=map_location).to(device) |
|
|
|
|
|
return cls(t3, s3gen, ve, tokenizer, device, conds=conds) |
|
|
|
|
|
@classmethod |
|
|
def from_pretrained(cls, device) -> 'ChatterboxTTS': |
|
|
|
|
|
if device == "mps" and not torch.backends.mps.is_available(): |
|
|
if not torch.backends.mps.is_built(): |
|
|
print("MPS not available because the current PyTorch install was not built with MPS enabled.") |
|
|
else: |
|
|
print("MPS not available because the current MacOS version is not 12.3+ and/or you do not have an MPS-enabled device on this machine.") |
|
|
device = "cpu" |
|
|
|
|
|
for fpath in ["ve.safetensors", "t3_cfg.safetensors", "s3gen.safetensors", "tokenizer.json", "conds.pt"]: |
|
|
local_path = hf_hub_download(repo_id=REPO_ID, filename=fpath) |
|
|
|
|
|
return cls.from_local(Path(local_path).parent, device) |
|
|
|
|
|
def prepare_conditionals(self, wav_fpath, exaggeration=0.5): |
|
|
|
|
|
s3gen_ref_wav, _sr = librosa.load(wav_fpath, sr=S3GEN_SR) |
|
|
|
|
|
ref_16k_wav = librosa.resample(s3gen_ref_wav, orig_sr=S3GEN_SR, target_sr=S3_SR) |
|
|
|
|
|
s3gen_ref_wav = s3gen_ref_wav[:self.DEC_COND_LEN] |
|
|
s3gen_ref_dict = self.s3gen.embed_ref(s3gen_ref_wav, S3GEN_SR, device=self.device) |
|
|
|
|
|
|
|
|
if plen := self.t3.hp.speech_cond_prompt_len: |
|
|
s3_tokzr = self.s3gen.tokenizer |
|
|
t3_cond_prompt_tokens, _ = s3_tokzr.forward([ref_16k_wav[:self.ENC_COND_LEN]], max_len=plen) |
|
|
t3_cond_prompt_tokens = torch.atleast_2d(t3_cond_prompt_tokens).to(self.device) |
|
|
|
|
|
|
|
|
ve_embed = torch.from_numpy(self.ve.embeds_from_wavs([ref_16k_wav], sample_rate=S3_SR)) |
|
|
ve_embed = ve_embed.mean(axis=0, keepdim=True).to(self.device) |
|
|
|
|
|
t3_cond = T3Cond( |
|
|
speaker_emb=ve_embed, |
|
|
cond_prompt_speech_tokens=t3_cond_prompt_tokens, |
|
|
emotion_adv=exaggeration * torch.ones(1, 1, 1), |
|
|
).to(device=self.device) |
|
|
self.conds = Conditionals(t3_cond, s3gen_ref_dict) |
|
|
|
|
|
def generate( |
|
|
self, |
|
|
text, |
|
|
repetition_penalty=1.2, |
|
|
min_p=0.05, |
|
|
top_p=1.0, |
|
|
audio_prompt_path=None, |
|
|
exaggeration=0.5, |
|
|
cfg_weight=0.5, |
|
|
temperature=0.8, |
|
|
): |
|
|
if audio_prompt_path: |
|
|
self.prepare_conditionals(audio_prompt_path, exaggeration=exaggeration) |
|
|
else: |
|
|
assert self.conds is not None, "Please `prepare_conditionals` first or specify `audio_prompt_path`" |
|
|
|
|
|
|
|
|
if exaggeration != self.conds.t3.emotion_adv[0, 0, 0]: |
|
|
_cond: T3Cond = self.conds.t3 |
|
|
self.conds.t3 = T3Cond( |
|
|
speaker_emb=_cond.speaker_emb, |
|
|
cond_prompt_speech_tokens=_cond.cond_prompt_speech_tokens, |
|
|
emotion_adv=exaggeration * torch.ones(1, 1, 1), |
|
|
).to(device=self.device) |
|
|
|
|
|
|
|
|
text = punc_norm(text) |
|
|
text_tokens = self.tokenizer.text_to_tokens(text).to(self.device) |
|
|
|
|
|
if cfg_weight > 0.0: |
|
|
text_tokens = torch.cat([text_tokens, text_tokens], dim=0) |
|
|
|
|
|
sot = self.t3.hp.start_text_token |
|
|
eot = self.t3.hp.stop_text_token |
|
|
text_tokens = F.pad(text_tokens, (1, 0), value=sot) |
|
|
text_tokens = F.pad(text_tokens, (0, 1), value=eot) |
|
|
|
|
|
with torch.inference_mode(): |
|
|
speech_tokens = self.t3.inference( |
|
|
t3_cond=self.conds.t3, |
|
|
text_tokens=text_tokens, |
|
|
max_new_tokens=1000, |
|
|
temperature=temperature, |
|
|
cfg_weight=cfg_weight, |
|
|
repetition_penalty=repetition_penalty, |
|
|
min_p=min_p, |
|
|
top_p=top_p, |
|
|
) |
|
|
|
|
|
speech_tokens = speech_tokens[0] |
|
|
|
|
|
|
|
|
speech_tokens = drop_invalid_tokens(speech_tokens) |
|
|
|
|
|
speech_tokens = speech_tokens[speech_tokens < 6561] |
|
|
|
|
|
speech_tokens = speech_tokens.to(self.device) |
|
|
|
|
|
wav, _ = self.s3gen.inference( |
|
|
speech_tokens=speech_tokens, |
|
|
ref_dict=self.conds.gen, |
|
|
) |
|
|
wav = wav.squeeze(0).detach().cpu().numpy() |
|
|
watermarked_wav = self.watermarker.apply_watermark(wav, sample_rate=self.sr) |
|
|
return torch.from_numpy(watermarked_wav).unsqueeze(0) |